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ABSTRACT

Amid growing efforts to leverage advances in large language models (LLMs) and vision-language
models (VLMs) for robotics, Vision-Language-Action (VLA) models have recently gained signifi-
cant attention. By unifying vision, language, and action data at scale, which have traditionally been
studied separately, VLA models aim to learn policies that generalise across diverse tasks, objects,
embodiments, and environments. This generalisation capability is expected to enable robots to solve
novel downstream tasks with minimal or no additional task-specific data, facilitating more flexible
and scalable real-world deployment. Unlike previous surveys that focus narrowly on action repre-
sentations or high-level model architectures, this work offers a comprehensive, full-stack review,
integrating both software and hardware components of VLA systems. In particular, this paper pro-
vides a systematic review of VLAs, covering their strategy and architectural transition, architectures
and building blocks, modality-specific processing techniques, and learning paradigms. In addition,
to support the deployment of VLAs in real-world robotic applications, we also review commonly
used robot platforms, data collection strategies, publicly available datasets, data augmentation meth-
ods, and evaluation benchmarks. Throughout this comprehensive survey, this paper aims to offer
practical guidance for the robotics community in applying VLAs to real-world robotic systems. All
references categorized by training approach, evaluation method, modality, and dataset are available
in the table on our project website: https://vla-survey.github.io.

1 Introduction

The recent success in developing a variety of large language models (LLMs) [1,2] and large vision-language models
(VLMs) [3,4] has catalised remarkable advances in natural language processing and computer vision, fundamentally
transforming both fields. These advancements have also been extended to the field of robotics, where LLMs and
VLMs are leveraged to interpret multimodal inputs, reason about tasks, and perform context-aware actions, thereby
laying the groundwork for more generalisable and scalable robotic systems [5-7].

Earlier works decouple LLMs and VLMs from the underlying robot policies responsible for action generation [8,
9]. While effective for a limited set of predefined tasks, such systems typically rely on selecting from fixed motion
primitives or on policies learned through imitation learning, which limits their ability to generalise to a broader range
of tasks. Learning policies that can generalise from current observations and instructions to unseen tasks remains a
significant challenge.

To overcome these limitations, a growing body of research focuses on Vision-Language-Action (VLA) models [10].
By jointly learning visual, linguistic, and action modalities in an end-to-end framework, VL As aim to enable robots to
perform a wider range of tasks. The hope is that the resulting generalist policies aim to achieve generalization across
diverse tasks and facilitate effective transfer across varying robotic embodiments. This approach reduces the need for
extensive task-specific data collection and training, significantly lowering the cost of real-world deployment. As such,
VLAs offer a promising path toward more scalable and accessible robotic systems.

*Corresponding author. Email: kawaharazuka @jsk.imi.i.u-tokyo.ac.jp
TEqual contribution.



( Challenges of VLA Section ||)

h S

( ) (" ) ( ] )
Design Strategy Vision-Language-Action Model Data Collection
& Transition Dataset
Section Il
(N J Augmentation
f ) ) L Section VI |
Architecture °
. o0 ( )
Data Modality d Robot
Y Section 1V, Evaluation
( h Applicati
Training Strategy pplication
L Section V \_ Y, \ ARl )
( Recommendation for Practitioners Section Vlll)

Figure 1: Structure of this survey. Section 2 outlines the key challenges in developing Vision-Language-Action
(VLA) models. Section 3 and Section 4 review the evolution of VLA strategies, architectures, and modality-specific
design choices. Section 5 categorizes training strategies and practical implementation considerations. Section 6 dis-
cusses the data collection methologies, publicly available dataset, and data augmentation. Section 7 discusses the types
of robots used, evaluation benchmarks, and the applications of VLA models in real-world robot systems. Guidance
for practitioners is presented in Section 8, based on the findings of the systematic review.

Despite growing interest, research on VLAs remains in its early stages. Architectural and training methodologies are
not yet standardized, making it difficult to form a cohesive understanding of the field. This survey provides a systematic
overview of the current landscape of VLAs, including their historical development, model architectures, modality
integration strategies, and learning paradigms. While several previous surveys [11-13] have focused primarily on
either action tokenization or general architectural advancements, this survey provides a comprehensive, full-stack
overview, covering both software and hardware components. Specifically, beyond architecture and the development of
VLA:s, it includes robot platforms, data collection strategies, publicly available datasets, data augmentation techniques,
and evaluation benchmarks. We also introduce a taxonomy of existing VLA models and analyze representative models
within each category. This survey is intended to serve as a practical guide for researchers aiming to apply VLA models
to real-world robotic systems.

In this review, to clarify the scope, we define VLA models as systems that take visual observations and natural lan-
guage instructions as core inputs and produce robot actions by directly generating control commands (see Def. 1).
While additional modalities (e.g., proprioception or depth) may be included, the integration of vision and language is
essential. We exclude approaches that use vision and language solely for high-level reasoning or task planning without
grounding them in action execution, such as those that select from a set of pre-trained skills using a high-level policy.

A Vision-Language-Action (VLA) model is a system that takes visual observations and natural language
instructions as required inputs and may incorporate additional sensory modalities. It produces robot
actions by directly generating control commands. Thus, models in which a high-level policy (e.g., a
vision-language model backbone) merely selects an index from a set of pre-trained skills or control
primitives are excluded from this definition.

The overall structure of this survey is illustrated in Fig. 1. First, Section 2 outlines the key challenges addressed in VLA
research. Section 3 reviews major strategies and the architectural transition of VLA models. Section 4 introduces core
architectural components and building blocks, including modality-specific processing modules. Section 5 discusses



key training strategies and practical implementation considerations. Section 6 summarises data collection methodolo-
gies, publicly available datasets, and data augmentation. Then, Section 7 provides guidance for real-world deployment,
covering commonly used robot platforms, evaluation protocols, and current real-world applications. Based on the find-
ings of the systematic review, we present recommendations for practitioners in Section 8. Finally, Section 9 discusses
open challenges and future directions, and Section 10 presents our concluding remarks.

2 Challenges

The integration of visual, linguistic, and motor modalities presents a promising pathway toward the development of
generalist robot policies. However, the advancement of robust and deployable VLA models is still constrained by
several fundamental challenges. These limitations span across data availability, embodiment mismatches, and compu-
tational constraints, each imposing critical design trade-offs in model architecture, training strategy, and deployment
feasibility.

2.1 Data Requirements and Scarcity

Training VLA models require large-scale, diverse, and well-annotated data that aligns visual observations with natural
language instructions and corresponding actions. However, datasets satisfying all three modalities, vision, language,
and action, are limited in both scale and diversity. While vision-language datasets such as COCO Captions [14] or
web-scale corpora offer broad linguistic grounding, they lack the action grounding necessary for robotics. Conversely,
robot demonstration datasets often contain limited linguistic variability or are confined to narrow task distribution.

This mismatch leads to two data-related bottlenecks. First, models pre-trained on large-scale web or video datasets
may not transfer effectively to robotic tasks due to a lack of motor grounding or a discrepancy in the domain. Second,
high-quality robot demonstrations, often collected via teleoperation are expensive and difficult to scale. Such an issue
is further exacerbated when the number of modalities increases, such as adding tactile, acoustic, and 3D information.

2.2 Embodiment Transfer

Robots exhibit a wide range of embodiments. Some are equipped solely with arms, while others incorporate wheels,
legs, or other mobility mechanisms. Their joint configurations, link structures, sensor types and placements, and
even physical appearances vary significantly. While VLA models are increasingly trained on data from diverse robot
embodiments, transferring policies across embodiments remains a major challenge. Each robot typically operates
in a distinct action space and proprioceptive observation space, reflecting differences in degrees of freedom, sensor
modalities, and kinematic structure.

A related challenge lies in leveraging human motion data for training. Given the high cost of collecting large-scale
robot data, human demonstrations offer a promising alternative. However, such data generally lack explicit action
labels, and even when actions are inferred, they differ substantially from robot actions in both form and semantics. As
with robot-to-robot transfer, mapping human demonstrations into robot-executable actions is highly non-trivial.

These embodiment-related challenges raise fundamental questions for VLA development: What kinds of data best
support cross-embodiment generalization? How should morphological and sensory differences be represented? And
how can models be trained to ensure robust grounding of vision and language across diverse robotic and human
embodiments?

2.3 Computational and Training Cost

Training VLA models entails a considerable amount of computational demands due to the high-dimensional and
multi-modal nature of their input, typically including vision, language, and actions. While many recent approaches
leverage pre-trained VLM as a backbone, these models are typically adapted for robotics domain via large-scale robot
demonstrations or simulated data. Most practitioners are expected to build upon such pre-trained models and fur-
ther fine-tune them for downstream tasks using task-specific, high-quality expert demonstrations, rather than training
end-to-end from scratch. Nonetheless, both the adaptation and fine-tuning stages remain computationally intensive,
especially when processing long temporal sequences, high-resolution images, or additional modalities such as 3D
point clouds or proprioception. Transformer-based architectures, which dominate current VLA designs, also scale
poorly with respect to sequence length and input dimensionality, further amplifying memory and compute costs. At
inference time, running these models in real-world settings, particularly on resource-constrained robotic platforms,
poses additional challenges related to latency and memory usage. These computational burdens limit the accessibil-



ity and deployability of VLA systems, motivating ongoing research into efficient model architectures and distillation
methods that can reduce resource requirements without significantly degrading performance.
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Figure 2: Timeline of major Vision—-Language—Action (VLA) models. This figure summarizes the historical pro-
gression of representative VLA models shown in Section 3: from early CNN-based models (e.g., CLIPort [15]), to
real-world scalable policies leveraging pre-trained VLM backbones (e.g., RT-1, RT-2, RT-X, OpenVLA [10, 16-18]),
followed by models integrating diffusion and flow matching techniques (e.g., Octo, RDT-1B, 7y [19-21]), and more
recent approaches focusing on latent action inference and hierarchical control (e.g., LAPA, 7o 5, GROOT N1 [22-24]).

3 VLA Design Strategy and Transition

This section categorizes major interface strategies for transforming vision and language inputs into robot actions,
following the historical progression of VLA architectures (see Fig. 2). Each architectural category corresponds to
a distinct generation of VLA systems, characterized by how multimodal representations are aligned with control.
The discussion spans from early CNN-based models to transformer-based architectures, diffusion-based policies, and
finally, hierarchical control frameworks.

Early CNN-based end-to-end architectures. A foundational approach to end-to-end VLAs is CLIPort [15], one of
the earliest models to integrate CLIP [25] for extracting visual and linguistic features. It combines these modalities
with the Transporter Network [26] to learn object manipulation tasks in an end-to-end manner, identifying which
object to move and where to place it. CLIPort demonstrated the feasibility of jointly training vision, language, and
action by leveraging CLIP [25] as a pre-trained VLM. However, approaches based on Convolutional Neural Networks
(CNNs) and Multi-Layer Perceptrons (MLPs) face challenges in unifying diverse modalities and also struggle to scale
effectively.

Transformer-based sequence models. To address these limitations, Google DeepMind released Gato [27], a gener-
alist agent and precursor to the Robotics Transformer (RT) series. Gato performs a wide range of tasks, such as text
chatting, visual question answering, image captioning, gameplay, and robot control, using a single transformer [28]
model. It tokenizes language instructions using SentencePiece [29] and encodes images using Vision Transformer
(ViT) [30]. A decoder-only transformer is then used to autoregressively generate actions based on the combined input
sequence. While Gato enables multiple tasks with a single network, its repertoire of robotic skills remains limited
to a narrow set, such as block stacking with a robotic arm. Similarly, VIMA [31] is an encoder-decoder transformer
model that enables robots to follow general task instructions provided through a combination of text and goal images.
Objects are first detected using Mask R-CNN [32], after which each detected object’s image is tokenized using ViT.



Bounding box coordinates are separately embedded as tokens, and textual instructions are tokenized using the T5 tok-
enizer [33]. A frozen TS encoder and a transformer decoder are then used to autoregressively generate discrete action
tokens. While VIMA demonstrates the ability to perform a wide range of robotic tasks, all experiments were limited
to simulation environments.

Unified real-world policies with pre-trained VLMs. To enable scalable real-world applications, Robotics
Transformer-1 (RT-1) [16] has been introduced as a real-time, general-purpose control model capable of performing a
wide range of real-world tasks. RT-1 processes a sequence of images using EfficientNet [34], and performs FiLM con-
ditioning [35] with language features encoded by the Universal Sentence Encoder (USE) [36], enabling early fusion of
visual and linguistic modalities. The extracted tokens are compressed via TokenLearner [37] and then passed through
a decoder-only transformer, which outputs discretized action tokens nonautoregressively (see Section 4.1). Trained
on a large-scale dataset comprising 700 tasks and 130,000 episodes, RT-1 is regarded as the first VLA that unifies a
broad range of robotic tasks. Subsequently, RT-2 [10] has been introduced as the successor to RT-1. It builds on a
Vision-Language Model (VLM) backbone such as PaLM-E [38] or PaLI-X [39], pre-trained on large-scale internet
data. RT-2 is jointly fine-tuned on both internet-scale vision-language tasks and robotic data from RT-1, resulting in
strong generalization to novel environments. This VLM-based design has since become the standard architecture for
VLAs. In contrast, RT-X [17] has been introduced to demonstrate that training on datasets collected from multiple
robots enables the development of more general-purpose VLAs, moving beyond the single-robot training paradigm of
RT-1 and RT-2.

The RT series has been extended into several variations, including RT-Sketch, which takes sketch images as input; RT-
Trajectory, which takes motion trajectories as input; and others such as RT-H, Sara-RT, and AutoRT [40-44]. Among
these, RT-H [42] is particularly notable for introducing a hierarchical policy structure. Built on the RT-2 architec-
ture, RT-H incorporates a high-level policy that predicts an intermediate representation known as language motion,
and a low-level policy that generates actions based on it. By modifying the input prompt, the model can flexibly
alternate between generating high-level actions expressed in language and producing low-level robot actions directly.
By sequentially switching between high-level and low-level policies, RT-H demonstrates improved performance, par-
ticularly in long-horizon tasks. Such hierarchical VLA architectures have since become a recurring design pattern in
subsequent models. Building upon the RT-series, OpenVLA [18] is introduced as an open-source VLA framework that
closely mirrors the architecture of RT-2, leveraging a pre-trained VLM as its backbone. Specifically, it employs Pris-
matic VLM [45], based on LLaMa 2 (7B) [1], and encodes image inputs using DINOv2 [46] and SigLIP [47]. Through
full fine-tuning on the Open-X Embodiment (OXE) dataset [17], OpenVLA outperforms both RT-2 and Octo, and has
since emerged as a mainstream architecture for VLA.

Diffusion policy. Octo [19], introduced after the RT series, is the first VLA to leverage Diffusion Policy [48], and also
gained attention for its fully open-source implementation. Octo supports flexible goal specification, which can include
a language instruction and a goal image, processed by a TS5 encoder and a CNN, respectively. For input observations,
it similarly uses a CNN to encode images and a lightweight multilayer perceptron (MLP) to embed proprioceptive
signals. All tokens are concatenated into a single sequence, augmented with modality-specific learnable tokens, and
passed into a transformer. Finally, a diffusion policy generates continuous actions, conditioned on the output readout
tokens.

Diffusion transformer architectures. RDT-1B [20] has been proposed as a large-scale diffusion transformer for
robotics. In contrast to prior approaches, where the diffusion process is applied only at the action head, RDT-1B
employs a Diffusion Transformer (DiT) [49] as its backbone, integrating the diffusion process directly into the trans-
former decoder to generate actions. In RDT-1B, language inputs are tokenized using the T5 encoder, while visual
inputs are encoded using SigLIP. A diffusion model is then trained using a diffusion transformer with cross-attention,
conditioned on both visual and textual tokens. To facilitate multimodal conditioning and avoid overfitting, Alternating
Condition Injection is proposed, in which image and text tokens are alternately used as queries at each transformer
layer.

Flow matching policy architectures. Recently, inspired by Transfusion [50], 7y builds on PaliGemma [51] and
introduces a custom action output module, the action expert, which enables a multimodal model to handle both discrete
and continuous data. The action expert leverages flow-matching [52] to generate actions at rates up to 50Hz. It receives
proprioceptive input from the robot and the readout token from the transformer, producing actions through a reverse
diffusion process. Rather than generating tokens autoregressively, it outputs entire action chunks in parallel, enabling
smooth and consistent real-time control.

Latent action learning from video. Another notable approach is LAPA [22], which leverages unlabeled video data for
pre-training to learn latent actions for use in VLA models. This enables policies to effectively utilize human demon-
strations, making them robust to changes in embodiment and well-suited for real-world deployment. The method
applies patch embeddings, a spatial transformer, and a causal temporal transformer to images x; and x4z, then
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Figure 3: Structure of Section 4 and Section S. The figure summarizes key components of VLA models. The center
illustrates core architectural types, including sensorimotor models, world models, and affordance-based models. The
left side depicts the input and output modalities—vision, language, action, and other auxiliary modalities. The right
side presents training strategies, including supervised learning, self-supervised learning, and reinforcement learning,
along with practical implementation considerations.

computes their difference. VQ-VAE [53] is applied to this difference, generating a discrete token z; which, together
with x4, is used to reconstruct &, ;7. This entire network is trained jointly, forming a Latent Quantization Network.
Building on LWM-Chat-1M (7B) [54], the vision and text encoders are kept frozen, and the resulting readout token is
processed through an MLP trained to predict z;. Finally, only the MLP component is replaced by a separate network
trained to directly output robot control commands.

Hierarchical policy architectures. The most recent generation of VLAs adopts hierarchical policies to bridge high-
level language understanding with low-level motor execution. RT-H [42] exemplifies this design by introducing a
high-level controller that predicts intermediate “language motion” plans, followed by a low-level controller that refines
these into concrete actions. The system can dynamically switch between generating symbolic actions and executing
detailed control sequences, improving performance in long-horizon, multi-step tasks.

This design is extended in 7o 5 [55], which combines high-level action token generation (using FAST tokens) with
a low-level controller trained via flow matching. Pre-training aligns symbolic actions with language, while post-
training ensures smooth execution via continuous action decoding. GROOT N1 [24] integrates multiple elements:
latent actions from LAPA, diffusion-based generation from RDT-1B, and flow-matching controllers from 7, unified
into a multi-stage policy that generalizes across robots and tasks. Hierarchical architectures now represent a state-of-
the-art approach for scalable and adaptable VLA models, balancing the abstraction of language grounding with the
precision of motor control.

4 Architectures and Building Blocks

Vision-Language-Action (VLA) models encompass a wide range of architectural designs, reflecting diverse strategies
for integrating perception, instruction, and control. A widely adopted approach is the sensorimotor model, which
jointly learns visual, linguistic, and action representations. These models take images and language as input and
directly output actions, and can adopt either a flat or hierarchical structure with varying backbone architectures. While
sensorimotor models form a foundational class of VLA systems, several alternative architectures have been proposed.
World models predict the future evolution of sensory modalities, typically visual, conditioned on language input, and
use these predictions to guide action generation. Affordance-based models are another variant that predict action-
relevant visual affordances based on language, and then generate actions accordingly.

4.1 Sensorimotor Model

There are currently seven architectural variations of the sensorimotor models, as illustrated in Fig. 4.
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Figure 4: Architecture of sensorimotor models for VLA. This figure categorizes seven representative architectures
used in recent VLA research. (1) Transformer + Discrete Action Token: A standard transformer processes tokenized
inputs to predict discrete actions. (2) Transformer + Diffusion Action Head: A diffusion model is appended to the
transformer for generating smooth, continuous actions. (3) Diffusion Transformer: The diffusion process is integrated
directly within the transformer architecture. (4) VLM + Discrete Action Token: Vision-language models (VLMs) re-
place transformers to leverage pre-trained knowledge while predicting discrete actions. (5) VLM + Diffusion Action
Head: Combines VLMs with diffusion heads for continuous control. (6) VLM + Flow Matching Action Head: Substi-
tutes diffusion with flow matching to enhance real-time control. (7) VLM + Diffusion Transformer: Employs a VLM
as a backbone and a diffusion transformer as a low-level policy for end-to-end continuous action generation.

(1) Transformer + Discrete Action Token. This architecture represents both images and language as tokens, which
are fed into a transformer to predict the next action, typically in the form of discrete tokens (see Fig. 4 (1)). This
category also includes models that use CLS tokens and generate continuous actions through an MLP. Representative
examples include VIMA [56] and Gato [27], which tokenize multiple modalities using language tokenizers, vision
transformers, MLPs, and other components, and output discretized actions such as binned values. VIMA employs an
encoder-decoder transformer conditioned on diverse task modalities, whereas Gato uses a decoder-only transformer
that autoregressively processes all tokens in a single sequence.

In contrast to VIMA and Gato, which generate action tokens autoregressively, RT-1 [16] adopts a different approach
by compressing inputs using TokenLearner [37] and employing a decoder-only transformer to predict all action to-
kens non-autoregressively. In practice, 48 tokens are fed into the transformer, and the final 11 tokens are extracted
as action outputs. This architecture has been adopted by several approaches, such as MOO [57], RT-Sketch [58],
and RT-Trajectory [59]. It has also become a common design choice in other VLA models such as Robocat [60],
RoboFlamingo [61], and many others [62—67], due to its simplicity and scalability.

(2) Transformer + Diffusion Action Head. This architecture builds upon the structure in (1) by incorporating a
diffusion policy as the action head following the transformer. While discrete action tokens often lack real-time re-
sponsiveness and smoothness, these models achieve continuous and stable action outputs using diffusion models [68].
Representative examples include Octo [19] and NoMAD [69]. Octo processes image and language tokens as a single
sequence through a transformer, then applies a diffusion action head conditioned on the readout token. In contrast,



NoMAD replaces the language input with a goal image, compresses the transformer output via average pooling, and
uses the resulting vector to condition the diffusion model. Tiny VLA [70], RoboBERT [71], and VidBot [72] also adopt
this architecture.

(3) Diffusion Transformer. The diffusion transformer model shown in Fig. 4 (3) integrates the transformer and
diffusion action head, executing the diffusion process directly within the transformer. This enables the model to
perform the diffusion process conditioned directly on image and language tokens. For example, RDT-1B [20], built
on this architecture, generates a sequence of action tokens via cross-attention with a vision and language query, which
are subsequently mapped to executable robot actions through an MLP. Similarly, Large Behavior Models (LBMs) also
adopt the diffusion transformer architecture and emphasize the importance of large-scale and diverse pre-training. In
addition, StructDiffusion, MDT, DexGraspVLA, UVA, FP3, PPL, PPI, and Dita [73—80] uses this architecture.

(4) VLM + Discrete Action Token. VLM + Discrete Action Token models, as illustrated in Fig. 4 (4), improve
generalization by replacing the transformer in (1) with a Vision-Language Model (VLM) pre-trained on large-scale
internet data. Leveraging a VLM allows these models to incorporate human commonsense knowledge and benefit from
in-context learning capabilities. For example, RT-2 uses large-scale VLMs such as PaALM-E or PalLI-X as the backbone,
which processes image and language tokens as input and outputs the next action as discrete tokens. Furthermore, LEO,
GR-1, RT-H, RoboMamba, QUAR-VLA, OpenVLA, LLARA, ECoT, 3D-VLA, RoboUniView, and CoVLA [18,42,
81-89] adopt this architecture.

(5) VLM + Diffusion Action Head. VLM + Diffusion Action Head models, as shown in Fig. 4 (5), build on (2) by
replacing the transformer with a VLM. This architecture combines VLMs, which enable better generalization, with
diffusion models that generate smooth, continuous robot action commands. For example, Diffusion-VLA, DexVLA,
ChatVLA, ObjectVLA, GO-1 (AgiBot World Colosseo), PointVLA, MoLe-VLA, Fis-VLA, and CronusVLA [90-98]
adopt this architecture. HybridVLA [99] further combines (4) and (5) to both autoregressively generate discrete tokens
as well as use a diffusion action head to generate continuous actions within a single model.

(6) VLM + Flow Matching Action Head. VLM + Flow Matching Action Head models, as shown in Fig. 4 (6),
replace the diffusion model in (5) with a flow matching action head [52], improving real-time responsiveness while
maintaining smooth, continuous control. A representative example is 7y, based on PaliGemma [51], which achieves
control rates of up to 50 Hz. Other examples include GraspVLA, OneTwoVLA, Hume, and SwitchVLA [100-103].
0.5 [23] integrates the architectures of (4) and (6), supporting both discrete tokens and flow matching within a unified
framework.

(7) VLM + Diffusion Transformer. VLM + Diffusion Transformer models, shown in Fig. 4 (7), combine a VLM
with a diffusion transformer described in (3). The VLM typically serves as a high-level policy (system 2), while the
diffusion transformer acts as a low-level policy (system 1). The diffusion transformer may be implemented using
either diffusion or flow matching. A representative model is GROOT N1 [24], which applies cross-attention from the
diffusion transformer to VLM tokens and generates continuous actions via flow matching. This design is also used in
CogACT, TrackVLA, SmolVLA, and MinD [104-107].

4.2 World Model

World models are capable of anticipating future observations or latent representations based on the current inputs.
Their forward predictive capabilities have made them increasingly central to VLA systems, where they support plan-
ning, reasoning, and control. In this section, we group these approaches into three types, as illustrated in Fig. 5.

(1) Action generation in world models. In contrast to models that directly generate actions, world models generate
future visual observations, such as images or video sequences, which are then used to guide action generation. For
example, UniPi [108] employs a diffusion model inspired by Video U-Net [109] to generate video sequences from an
initial observation image and task instruction. Then, an inverse dynamics model (IDM) translates the predicted image
sequence into low-level actions. This combination of visual prediction and IDM-based control is a common design
pattern in model-based VLAs. Similarly, DreamGen [110] and GeVRM [111] predict future visual representations
for action generation. HiP [112] extends this idea by incorporating subtask decomposition with a LLM, enabling
the execution of longer-horizon behaviors. Dreamitate [113] finetunes Stable Video Diffusion [114] to synthesize a
video of human using a tool for manipulation tasks. Then, given the generated video, MegaPose [115] estimates the
6-DoF pose of the tool so that the robot can follow the estimated tool poses. In contrast to generating full video
sequences, SuSIE [116] predicts abstract subgoal images by using InstructPix2Pix [117] to generate intermediate goal
images from the initial observation and task instruction, which are then used to condition a diffusion policy. CoT-VLA
employs a similar approach for chain-of-thought reasoning (see Section 4.1 for further details.). LUMOS [118] also
generates a goal image, but does so using a world model that takes low-level action commands as input. In LUMOS,
a policy is trained to imitate expert demonstrations by interacting with the learned world model.
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Figure 5: Design patterns for incorporating world models in VLA. (1) Using world models in conjunction with
inverse dynamics models to generate actions. (2) Leveraging world models to learn latent action representations,
particularly from human videos; the resulting latent tokens are then used for VLA training to incorporate human
video datasets. (3) Generating future observations in addition to actions, enabling predictive planning and multimodal
reasoning.

In addition to video and image generation, many recent works leverage optical flow or feature point tracking. Because
optical flow and feature tracking are agnostic to robot embodiment, they offer a more generalizable way to leverage
human demonstrations. AVDC [119], similar to UniPi, generates video sequences and computes optical flow for each
frame using GMFlow [120]. It then formulates the estimation of SE(3) rigid body transformations for target objects
as an optimization problem. ATM [121] predicts future trajectories of arbitrary feature points (using CoTracker [122]
during training), and trains a transformer that generates actions guided by these trajectories. Track2Act [123] predicts
feature point trajectories between an initial and goal image, optimizes for 3D rigid body transformations, and learns
a residual policy to refine the motion. LangToMo [124] predicts future optical flow from an initial image and task in-
struction, using RAFT [125] for optical flow supervision, and maps this prediction to robot actions. MinD [107] adopts
an end-to-end approach that jointly learns video and action prediction. In particular, MinD combines a low-frequency
video generator, which predicts future visual observations in a latent space from initial images and instructions, with
DiffMatcher, which transforms these predictions into time-series features that the high-frequency action policy then
uses to efficiently generate an action sequence. PPI [79] takes visual and language inputs to predict gripper poses
and object displacements (Pointflow) at each keyframe. These are then used as intermediate conditions for action
generation.

(2) Latent action generation via world models. This category of VLAs leverages world models to learn latent action
representations from human demonstrations. For example, LAPA (Latent Action Pre-training from Videos) [22] (see
Section 3 for details) jointly learns to predict action representations from tuples of current and future images, as well as
to generate future frames conditioned on the current image and the latent action. This dual objective enables training
on datasets without explicit action labels, such as human videos. Once latent actions are learned, a VLA policy is
trained using these tokens. The action head is then replaced and fine-tuned to output robot actions. LAPA has been
used for pre-training in GROOT N1 [24] and DreamGen [110]. Moreover, GO-1 [94] and Moto [126] employ a similar
approach. UniVLA [127] augments the latent space of DINOv2 [46] with language inputs and uses a two-stage
training process to disentangle task-independent and task-dependent latent action tokens. UniSkill [128] employs
image editing based approach to extract latent actions from RGB-D images and uses them as conditions for a diffusion
policy.

(3) Sensorimotor models with implicit world models. This category refers to VLAs that jointly output both ac-
tions and predictions of future observations to improve performance. GR-1 [82] integrates a pre-trained MAE-ViT
encoder [129], CLIP text encoder [25], and a transformer, and is trained on the Ego4D dataset [130] to predict future
observation images. It is then fine-tuned to jointly predict both actions and future frames from image, language, and
proprioceptive inputs. By incorporating observation prediction, akin to a video prediction model, into a standard VLA
framework, GR-1 demonstrates improved task success. GR-2 [131] builds on GR-1 by scaling up the training dataset
and incorporating architectural improvements, including VQGAN-based image tokenization [132] and a conditional
VAE [133] for action generation. GR-MG [134] generates intermediate goal images using an InstructPix2Pix-based
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Figure 6: Design patterns for incorporating affordance-based models in VLA. (1) Predicting affordances and
subsequently generating actions conditioned on the predicted affordances; (2) Extracting affordances from human
demonstration videos and learning latent representations to guide action generation; (3) Integrating affordance predic-
tion modules directly into the VLA architecture.

model [117] and embedding them within a GR-1-style framework. Furthermore, GR-3 [135] implements a hierar-
chical structure by integrating VLM (Qwen2.5-VL [136] and diffusion transformer with flow matching for action.
3D-VLA [87] extends this line of work by predicting RGB-D images with Stable Diffusion [137] and point clouds
using Point-E [138]. Several other models incorporate full video prediction into sensorimotor models, including
FLARE [139], UVA [76], WorldVLA [140], and ViSA-Flow [141].

4.3 Affordance-based Model

Affordances [142] refer to the action possibilities that an environment offers an agent, relative to its physical and
perceptual capabilities. In robotics, this concept is often adapted to denote the actionable properties of objects or
scenes, specifically, what actions are possible given the robot’s embodiment and the spatial or functional cues present.
VLAs based on affordance prediction can be currently categorized into three types, as illustrated in Fig. 6.

(1) Affordance prediction and action generation using VLMs. Pre-trained VLMs are often used to estimate af-
fordances and generate corresponding actions. For example, VoxPoser [143] uses GPT-4 [2], OWL-ViT [144], and
Segment Anything [145] to generate Affordance and Constraint Maps from language instructions, which are then used
to guide action generation via Model Predictive Control (MPC). KAGI [146] employs GPT-40 [4] to infer a sequence
of target keypoints from top-down and side-view images with overlaid grid lines, providing guidance for RL. LERF-
TOGO [147] builds a 3D scene using a NeRF [148] trained on visual features extracted from CLIP and DINO [25, 149]
(LERF [150]). CLIP’s text encoder is used to compute similarity between language instructions and visual features,
and high-activation regions are converted into 3D point clouds, which are then processed by GraspNet [151] to rank
grasp poses. Splat-MOVER [152] replaces NeRF with Gaussian Splatting [153] for faster scene construction and
incorporates affordance heatmaps from the VRB model [154], improving both efficiency and performance.

(2) Affordance extraction from human datasets. This line of work focuses on extracting affordances from human
motion videos, often without annotations, to enable scalable learning for robotic action generation. VRB [154] learns
contact points and hand trajectories from demonstration videos in the EPIC-KITCHENS datasets [155, 156]. In VRB,
Hand-Object Detector (HOD) [157] is used to identify hand positions and contact states, then tracks subsequent hand
movements on the image plane to automatically construct a training dataset. The extracted data are projected into 3D
and used to generate robot actions. HRP [158] extracts hand, contact, and object affordance labels from the Ego4D
dataset [130], trains a ViT model to predict these labels, and uses its latent representations for imitation learning.
VidBot [159] extends 2D affordance representations to 3D, aiming to support zero-shot deployment on robots.

(3) Integration of sensorimotor models and affordance-based models. This approach incorporates affordance
prediction into VLA. CLIPort [15] predicts affordances of objects and the environment from visual and language
inputs, and generates actions based on these affordances. RoboPoint [160] builds a vision-language model that iden-
tifies affordance points, specific locations in an image where the robot should act, which are then projected into 3D
to generate corresponding actions. RoboGround [161] predicts masks for the target object and placement area in
pick-and-place tasks given image and language inputs; RT-Affordance [162] outputs key end-effector poses at criti-
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cal moments; Ay [163] predicts object contact point trajectories; and RoboBrain [164] identifies affordance regions
as bounding boxes. Collectively, these models leverage affordance information as conditioning input for action gen-
eration. Chain-of-Affordance [165], inspired by Chain-of-Thought reasoning (see Section 4.1), predicts a sequence
of affordances such as object positions, grasp points, and placement locations in an autoregressive manner, and then
generates actions, leading to improved performance.

4.4 Data Modalities

VLASs process multiple modalities simultaneously, including vision, language, and action. This section summarizes
how each modality is handled in state-of-the-art systems.

4.4.1 Vision

The most common approach for visual feature extraction in VLAs is to use ResNet [166] or Vision Transformer
(ViT) [30]. These models are typically pre-trained on large-scale datasets such as ImageNet [167,168] or LAION [169,
170], although ResNet is often trained from scratch. Some methods apply ResNet directly to the image and convert
the output into tokens using an MLP, while others first divide the image into patches before applying the encoder.
Furthermore, ViT pre-trained with MAE [129] and EfficientNet [34] are also commonly used.

Vision-language models such as CLIP [25] and SigLIP [47] are also widely used. CLIP learns joint visual and tex-
tual representations via contrastive learning, while SigLIP improves upon it by removing the softmax constraint and
reducing sensitivity to batch size. These models are often used alongside DINOv2 [46], a self-supervised vision
model that learns image features without requiring paired text or contrastive objectives. While CLIP was initially the
dominant choice, SigLIP and DINOv2 have emerged as the preferred models for visual feature extraction in VLAs.
OpenCLIP [171] and EVA-CLIP [172] are also adopted in several prior works.

In addition, VQ-GAN [132] and VQ-VAE [53] are commonly used for discretizing images into token sequences. Un-
like ViT or CLIP, which produce continuous embeddings, these models generate discrete tokens that are more naturally
aligned with the input format of LLMs. The resulting visual tokens are often further processed to integrate with other
modalities or to reduce token length. A well-known example is the Perceiver Resampler from Flamingo [173], which
compresses visual information using a fixed-length set of learnable latent tokens via cross-attention. Building on this
idea, Q-Former in BLIP-2 [3] combines cross-attention and self-attention to extract task-relevant information, while
QT-Former [174] incorporates temporal structure into the process. TokenLearner [37] takes a different approach by
performing spatial summarization to reduce token count. These compression and integration techniques are widely
used in VLAs.

Several works in VLA adopt object-centric features, such as bounding box coordinates or cropped region embeddings,
instead of relying solely on continuous feature maps. These features are typically extracted using object detection,
segmentation, or tracking models, including Mask R-CNN [32], OWL-VIiT [144], SAM [145], GroundingDINO [175],
Detic [176], and Cutie [177].

4.4.2 Language

For language tokenization, VLAs typically inherit the tokenizer from their underlying LLM backbone, such as the
T5 tokenizer [33] or LLaMA tokenizer [1]. When the base model is not a pre-trained LLM, tokenization is typically
performed using subword algorithms such as Byte-Pair Encoding (BPE) or tools like SentencePiece [29], which im-
plements BPE as well as other algorithms. For language encoding, VL As employ various text encoders to embed
natural language instructions into vector representations, including the Universal Sentence Encoder (USE) [36], CLIP
Text Encoder [25], Sentence-BERT [178], and DistilBERT [179]. These language embeddings are frequently used to
condition visual features via techniques such as FILM conditioning. In architectures that use VLMs as backbones,
visual information is directly integrated into the LLM component, with popular choices including LLaMA 2 [1],
Vicuna [180], Gemma [181], Qwen2 [182], Phi-2 [183], SmolLM?2 [184], GPT-NeoX [185], and Pythia [186].

4.4.3 Action

Action representation in end-to-end VLA models can be categorized into several primary approaches. This classifica-
tion excludes specialized architectures such as affordance-based or world model-based methods.

Discretized action tokens obtained via binning. The most common approach to representing actions in VLAS is to
discretize each dimension of the action space into bins (typically 256), with each bin ID treated as a discrete token.
For example, RT-2 with PaLI-X [10, 39] directly outputs numeric tokens as actions; and RT-2 with PaLM-E [38] and
OpenVLA [18] reserve the 256 least frequent tokens in the vocabulary for action representation. These models are
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typically trained using cross-entropy loss and adopt autoregressive decoding, similar to LLMs. Several models instead
use non-autoregressive decoding, by inserting a readout token to enable parallel generation of all action tokens [187],
or by treating the final few output tokens as discretized arm and base action (as in RT-1). A known drawback of
standard binning is the increase in token length, which can limit control frequency. To mitigate this, FAST [55] applies
the Discrete Cosine Transform (DCT) along the temporal axis, quantizes the frequency components, and compresses
them using Byte-Pair Encoding (BPE). This significantly reduces token length and enables faster inference compared
to conventional binning.

Decoding tokens into continuous actions. In this approach, tokens generated by a transformer are mapped to con-
tinuous actions via a multilayer perceptron (MLP), typically trained with an L2 or L1 loss. For binary outputs such
as gripper open/close, binary cross-entropy is often used. OpenVLA-OFT [188] suggests that L1 loss may yield bet-
ter performance. The MLP decoder can be replaced by alternative modules, such as an LSTM [189] to incorporate
temporal context, or a Gaussian Mixture Model (GMM) to model stochasticity in the action space. Proprioceptive or
force signals are often incorporated into the decoding module, such as an MLP or LSTM. Non-autoregressive variants
commonly apply pooling operations (e.g., average or max pooling) to compress multiple tokens into a single action
representation, as seen in RoboFlamingo [61]. OpenVLA-OFT [188] extends this by predicting multi-step action
chunks, resulting in smoother and more temporally coherent trajectories.

Continuous action modeling via diffusion or flow matching. Diffusion models and flow matching have become
prominent approaches for generating continuous actions in VLAs, as seen in Octo [19] and 7y [21]. These models
generate actions non-autoregressively, enabling smoother and more scalable control. Flow matching is particularly
suitable for real-time applications, as it requires fewer inference steps than traditional diffusion. While some models
implement diffusion as an external action head after the transformer, recent designs increasingly embed the process
within the transformer itself, for example, in diffusion transformer architectures. Training and inference are commonly
based on DDPM [68] and DDIM [190], with improved performance in stability and efficiency offered by methods such
as TUDP [191], which ensure denoising consistency at every time step.

Learning latent action representations from web-scale data. This approach utilizes world modeling to obtain latent
action representations when explicit actions are unavailable, such as in human demonstrations. By leveraging web-
scale video data, this method enables training on significantly larger datasets and facilitates learning more generalizable
VLAs. LAPA [22], Moto [126], UniVLA [127], and UniSkill [128] demonstrate this approach. For additional details,
see Section 4.2.

Alternative action representation. Spatial VLA [192] statistically discretizes the action space and reduces the number
of spatial tokens by allocating higher resolution to frequently occurring motions. ForceVLA [193] and ChatVLA [92]
employ Mixture of Experts (MoE) architectures to dynamically switch action policies based on task phases. iMa-
nip [194] enables continual learning by incrementally adding learnable action prompts, preserving prior skills while
acquiring new ones.

Cross-embodiment action representation. The challenge of embodiment diversity arises when handling robot-
specific modalities such as actions and proprioception. Open X-Embodiment Project [17] was the first to tackle
this embodiment challenge. Building upon the RT-1 [16] and RT-2 [10] architectures, this work standardized datasets
across different robots using a unified format: single camera input, language instructions, and 7-DoF actions (posi-
tion, orientation, and gripper open/close). This approach demonstrates a key insight that integrating data from robots
with diverse embodiments leads to significantly improved VLA model performance compared to training on a single
embodiment. Moreover, another prior work [195] has proposed to normalize and align actions and observations from
heterogeneous embodiments into a shared first-person perspective, thereby enabling unified control of various robots
using only observations and goal images [195]. However, such approaches struggle to uniformly handle robots with
drastically different observations or control inputs, such as manipulators, mobile robots, and legged robots.

To address this limitation, CrossFormer [67] enables unified processing across diverse embodiments by first tokenizing
heterogeneous sensor observations—such as vision, proprioception, and task specifications—using modality-specific
tokenizers. All tokens are then assembled into a unified token sequence, with missing modalities masked as needed.
This sequence is processed by a shared decoder-only transformer, which uses readout tokens to extract task-relevant
representations. These are subsequently passed to embodiment-specific action heads (e.g., single-arm, bimanual, navi-
gation, or quadruped) to generate actions tailored to each robot type. UniAct [196] proposes a Universal Action Space
(UAS) implemented as a discrete codebook shared across embodiments. A transformer predicts discrete action tokens
from this codebook, which are then converted into continuous actions by embodiment-specific decoders. By explicitly
defining a shared atomic action space, UniAct facilitates knowledge transfer and promotes reusability across diverse
robot embodiments. Furthermore, UniSkill [128] incorporates human demonstration knowledge by extracting latent
skill representations from unlabeled human video data, in addition to robot data, similar to LAPA [22], enabling more
generalizable VLA models. Additionally, embodiment-agnostic frameworks such as LangToMo [124] and ATM [121]
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achieve cross-embodiment learning by leveraging intermediate representations, such as optical flow and feature point
trajectories, thereby bypassing the need for direct action space alignment.

4.4.4 Miscellaneous Modalities

In addition to vision, language, and action, modern VLA models increasingly incorporate additional modalities to en-
hance perception and interaction capabilities. In this section, we describe three additional sensing modalities relevant
to VLA systems: audio, tactile sensing, and 3D spatial information.

Audio. Several prior works such as Unified-10 2 [62], SOLAMI [197], FuSe [198], VLAS [199], and MultiGen [200]
leverage audio information as input. Audio encoders typically take spectrograms or mel-spectrogram images as input,
which are then converted into audio tokens using models like ResNet or ViIT-VQGAN. RVQ-VAE-based SpeechTo-
kenizer [201], Audio Spectrogram Transformer (AST) [202], or the Whisper encoder [203] are also frequently used
as pre-trained models. These encoders enable the system to leverage rich audio information that may not be readily
transcribed into text for robotic decision-making. SoundStorm [204] or the decoder of VQGAN are often employed
for decoding. A common and straightforward approach, as employed in RoboNurse-VLA [205], is to convert audio
into text using standard automatic speech recognition (ASR) systems.

Tactile sensors. FuSe [198], TLA [206], VTLA [207], and Tactile-VLA [208] incorporate tactile information as part
of inputs. Tactile sensors such as DIGIT [209] and GelStereo 2.0 [210], which produce image-based outputs, are
commonly used. These tactile images are either encoded using a Vision Transformer (ViT) or tokenized via a pre-
trained Touch-Vision-Language (TVL) model [211]. This enables the integration of visual and tactile information for
learning fine-grained manipulation skills in contact-rich tasks, such as peg insertion. Although not tactile sensors in the
strict sense, ForceVLA [193] incorporates general 6-axis force-torque sensors. In particular, a force-aware Mixture-
of-Experts fusion module integrates force tokens derived from 6-axis force-torque sensor data with visual-language
features extracted by a pre-trained VLM, and generates actions through an action head.

3D information. Incorporating 3D information enables robots to more accurately perceive their environment and plan
actions accordingly. In 3D perception, we specifically introduce (a) depth images, (b) multi-view images, (c) voxel
representations, and (d) point clouds below.

(a) Depth images. A common strategy for incorporating depth information involves tokenizing depth images using
standard visual backbones, such as Vision Transformers (ViTs) or ResNets, similar to the processing of RGB im-
ages. In scenarios where direct depth sensing is not available, monocular depth estimation models such as Depth
Anything [212] and ZoeDepth [213] are frequently utilized to predict depth from RGB inputs. SpatialVLA [192] is a
representative method that utilizes depth images by introducing Ego3D Position Encoding. In this framework, depth
maps are first estimated from RGB inputs using ZoeDepth, and the corresponding 3D coordinates for each pixel are
computed via the camera’s intrinsic parameters. The 3D coordinates are first processed using sinusoidal positional
encoding and an MLP, and the resulting features are added to the 2D visual features extracted by SigLIP [47]. This
combined representation is used as the Ego3D positional encoding and provided as input to the LLM. Additionally,
HAMSTER [214], Rational VLA [215], and OpenHelix [216] incorporate a 3D Diffuser Actor [217], a diffusion-based
action head that operates in 3D space and processes RGB-D inputs to generate actions.

(b) Multi-view images. Several works attempt to extract 3D information from multi-view images. For example,
GO-1 [94] simply takes as input multi-view RGB-D images, encouraging implicit understanding of 3D structure.
3D-VLA [87] extends Q-Former (described in Section 4.4.1) to handle RGB-D and multi-view inputs. Evo-0 [218]
employs Visual Geometry Grounded Transformer (VGGT) [219] to extract implicit 3D geometric information from
multi-view RGB images. RoboUniView [88] and RoboMM [220] utilize UVFormer, a pre-trained model that takes
multi-view RGB-D images and corresponding camera parameters as input and outputs a 3D occupancy grid. The
encoder’s output features are then used as tokens for downstream processing. Furthermore, SAM2Act [221] and
HAMSTER [214] use Robotic View Transformer-2 (RVT-2) [222] to reproject point cloud or depth information into a
virtual view (often using orthographic projection to generate three images), and each image is tokenized by ViT. Sim-
ilar approaches are also used in OG-VLA [223] and BridgeVLA [224]. Overall, two main approaches have emerged:
integrating information from multiple viewpoints, and projecting 3D data into orthographic images to facilitate easier
processing.

(c) Voxel representations. Voxel-based representations are another widely adopted approach for encoding 3D infor-
mation. OccLLaMA [225] and OpenDriveVLA [226] convert 3D occupancy grids into 2D Bird’s Eye View (BEV)
feature maps, which are then tokenized using VQ-VAE. Several approaches operate directly on three-dimensional
voxel grids, such as iManip [194], which extracts features using a 3D U-Net [227], and VidBot [72], which first con-
verts voxel grids into Truncated Signed Distance Fields (TSDFs) and then processes them using a 3D U-Net. Because
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voxel representations resemble image structures and are compatible with convolutional processing, they have been
widely adopted across various studies.

(d) Point clouds. A common approach involves tokenizing point clouds using pre-trained point-based transform-
ers such as PointNet [228], PointNet++ [229], PointNext [230], and Uni3D ViT [231]. These backbones are widely
adopted in models such as SOFAR [232], LEO [81], PPI [79], LMM-3DP [233], GeneralFlow [234], FP3 [77], and
DexTOG [235]. In contrast, some methods opt for task-specific training: StructDiffusion [73] uses the Point Cloud
Transformer (PCT) [236], and PointVLA [95] employs PointCNN [237], with both models trained from scratch for
their respective tasks. Additionally, although less common, LERF-TOGO [147] and Splat-MOVER [152] integrate
point clouds reconstructed using Neural Radiance Fields (NeRF) or Gaussian Splatting with semantic features ex-
tracted from CLIP [25]. These enriched representations are then used in conjunction with GraspNet [151] to generate
grasping plans.

Beyond the primary modalities discussed above, several VLA models have been proposed to incorporate additional
forms of information. ARM4R [238], for example, integrates 3D tracking data to enhance motion understanding.
SOLAMI [197] introduces a Motion Tokenizer that applies VQ-VAE to discretize the joint angles of SMPL-X [239]
on a per-body-part basis, following the approach introduced in motionGPT [240]. Additionally, PPL [78] and Lang-
ToMo [124] incorporate motion dynamics by using RAFT [125] to estimate optical flow from pairs of images, enabling
fine-grained temporal reasoning.

4.5 Emerging Techniques

Recent advances in VLA research highlight two emerging directions: hierarchical architectures and Chain-of-Thought
(CoT) reasoning. Both approaches introduce structured intermediate representations between language instructions
and low-level actions, enabling more robust planning, decomposition, and reasoning. Further details of these ap-
proaches are provided below.

Hierarchical architectures. The most foundational approach is Atomic Skill [241] and LMM-3DP [233], which use
existing VLMs as high-level policies to decompose task instructions into subtasks. These subtask descriptions are then
passed to a VLA acting as the low-level policy. Since the low-level policy receives cleaner and more concise language
inputs, it can execute actions more reliably than when processing complex, unstructured instructions directly. On the
other hand, Hi Robot [242] trains a custom high-level policy instead of relying on existing VLMs. NAVILA [243]
and HumanoidVLA [244] employ low-level policies trained using reinforcement learning (RL) to achieve fine-grained
motor control. RT-H [42] and LoHoVLA [245] take a more integrated approach by jointly training both high-level and
low-level policies within a single network. By switching the input prompt, these models can flexibly alternate between
decomposing a task instruction into subtasks and converting a subtask into a corresponding action. This approach
has been further extended to my 5 [23], which unifies subtask decomposition, discrete action token generation, and
continuous action generation within the same network. The integration of task decomposition with VLA models is
emerging as a promising approach for enabling more flexible and scalable robot behavior. Additionally, FiS-VLA [97],
OpenHelix [216], and DP-VLA [246] propose connecting high-level and low-level policies through latent spaces,
without explicitly defining intermediate representations as subtasks. Tri-VLA [247] integrates a pre-trained vision-
language model for scene understanding with Stable Video Diffusion, which produces visual representations capturing
both static observations and future dynamics. These representations are then used as input to a diffusion transformer,
which generates actions via cross-attention.

Chain-of-Thought (CoT) reasoning. Chain-of-Thought (CoT) reasoning, while conceptually similar to hierarchi-
cal approaches, introduces a distinct mechanism that has been integrated into VLA models such as ECoT [86] and
CoT-VLA [187]. ECoT addresses a key limitation of typical VLAs, which is their lack of intermediate reasoning,
by introducing a step-by-step process between observations, instructions, and action generation, thereby enhancing
planning and inference capabilities. In particular, ECoT achieves this by autoregressively predicting intermediate rep-
resentations, such as task descriptions, subtasks, and object positions, before generating the final action sequence. On
the other hand, CoT-VLA [187] generates subgoal images, thereby improving success rates on more visually grounded
tasks. ECoT-Lite [248] reduces inference latency caused by reasoning by selectively dropping certain reasoning com-
ponents during training. Fast ECoT [249] takes this further by reusing intermediate reasoning outputs and parallelizing
reasoning and action generation, resulting in faster action execution.
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S Training Strategy and Implementation

We categorize the training approaches of Vision-Language-Action (VLA) models into supervised learning, self-
supervised learning, and reinforcement learning. Below, we summarize the core characteristics and representative
methods of each approach.

5.1 Supervised Learning

Most VLA models are trained using supervised learning on datasets consisting of pairs of images, language, and
actions. Since many VLAs are built on LLMs, training is often formulated as a next-token prediction task. The
choice of action loss function depends on the architecture of the action head, such as MLPs, diffusion models, or flow
matching networks, ensuring appropriate supervision for each model type.

VLA training generally consists of two stages: pre-training and post-training. In many cases, a LLM or VLM pre-
trained on web-scale data is first used as the initial backbone for training. While some models are trained from scratch,
it is more common to initialize training with a pre-trained VLM that has already acquired commonsense knowledge,
in order to enhance generalization. Pre-training is typically performed using datasets such as human demonstrations,
heterogeneous robot demonstrations, or VQA datasets related to robotic planning. Similar to LLMs, data scale plays a
crucial role in VLA pre-training. Leveraging large and diverse datasets enables the development of VLA models with
stronger generalization across tasks and embodiments. In the pre-training stage, the pre-trained VLM is typically fully
fine-tuned to adapt to robotics-related domains. For further details about pre-training, see Section 5.4.1.

After pre-training, post-training is performed using task- or robot-specific datasets. In this stage, data quality tends to
be more important than quantity, and the datasets are often smaller to those used in pre-training. Finetuning strategies
differ across implementations. In some cases, the entire model undergoes full finetuning, whereas in others, adaptation
is limited to the action head.

Moreover, in-context learning, a technique originally developed for LLMs, has also been adapted for use in VLA sys-
tems. Rather than explicitly fine-tuning on demonstration data, in-context VLA models condition on a small number
of human teleoperation trajectories at test time to infer appropriate actions. For instance, ICRT [250] introduces a
framework in which 1-3 teleoperated demonstrations are provided as prompts, enabling the model to generate corre-
sponding robot actions in a zero-shot manner.

5.2 Self-Supervised Learning

Self-supervised learning is occasionally incorporated into the training of Vision-Language-Action (VLA) models,
serving three primary purposes.

Modality alignment focuses on learning temporal and task-level consistency across modalities in VLA models. For
instance, TRA [251] uses contrastive learning to align representations of current and future states within a shared
latent space, achieving temporal alignment. Similarly, task alignment is achieved by aligning language instruction
embeddings with those of goal images through contrastive objectives.

Visual representation learning aims to extract visual features from images or videos using techniques such as masked
autoencoding (e.g., MAE [129]), contrastive learning (e.g., CLIP [25]), and self-distillation (e.g., DINOv2 [46]). These
pre-trained models are widely adopted in VL As as foundational visual encoders.

Latent action representation learning leverages self-supervised techniques to learn action embeddings, as discussed
in Section 4.2 and Section 4.4.3. By extracting a latent action from the initial and goal images, and reconstructing the
goal image using the initial image and the extracted latent action, the model learns meaningful action representations
without requiring explicit labels. This approach is highly scalable and well-suited for large, unannotated datasets.

5.3 Reinforcement Learning

While VLA is trained via imitation learning in general, imitation learning alone faces challenges such as the inability
to handle novel behaviors and the requirement for sufficiently large and high-quality expert demonstrations. To ad-
dress these issues, several prior arts have explored finetuning VLA or training low-level policies using reinforcement
learning (RL), such as PPO [252] and SAC [253]. These approaches can be broadly categorized into the following
two types, as shown in Fig. 7.

(1) Improving VLA using RL. Recent work leverages RL to improve the robustness, adaptability, and real-world
performance of VLA models. Several approaches fine-tune VLAs using RL with task success or failure as the reward
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Figure 7: Approaches to integrating RL with VLA models. (1) RL is used to fine-tune VLA models to enhance
their performance. (2) VLA models serve as high-level policies, while RL policies handle low-level control.

(1) Improving VLA using RL

signal. iRe-VLA [254] achieves high performance by repeatedly combining supervised fine-tuning (SFT) on expert
data, online RL on the action head using success and failure rewards, and subsequent SFT using both expert data
and successful trajectories collected during online learning. ConRFT [255] applies imitation learning on a small set
of demonstrations, performs offline RL to learn a Q-function, and subsequently fine-tunes the policy online through
human interventions. This approach is inspired by prior frameworks such as SERL [256] and HIL-SERL [257],
which are reset-free [258,259], off-policy RL methods [260] designed for real-world robot learning. VLA-RL [261]
introduces the Robotic Process Reward Model (RPRM), which replaces sparse binary rewards with dense pseudo-
rewards derived from gripper actions and task progress, enabling more stable PPO-based training. RLDG [262]
fine-tunes large VLA models such as OpenVLA [18] and Octo [19] using successful trajectories collected via HIL-
SERL, allowing integration of multiple expert policies into a unified VLA. MoRE introduces a Mixture of Experts
(MoE) structure into the VLA, enabling token-wise expert selection and refinement via RL. RLRC [263] compresses
OpenVLA by pruning up to 90% of its parameters, recovers performance via SFT, and then applies RL for final
fine-tuning using task-level feedback. These studies demonstrate that RL, especially when combined with expert
demonstrations or human interventions, can significantly improve the flexibility and reliability of VLA models in real-
world settings. More recently, to address the potential instability associated with backpropagation through diffusion
chains, DSRL [264] proposes applying RL in the latent noise space of the diffusion policy. This approach avoids
updating the parameters of the underlying VLA model during RL fine-tuning. Instead, it learns a distribution over
the latent noise, allowing the model to sample informative initial noise vectors rather than from a standard Gaussian.
Notably, DSRL demonstrates that the success rate of 7y can be improved from approximately 20% to nearly 100%
using only 10K samples.

(2) Using VLAs as high-level policies and RL for low-level control. This class of approaches delegates high-level
decision-making to the VLA, while low-level control is handled by policies trained with RL. Humanoid-VLA [244]
uses a VLA to generate high-level commands, which are executed by a whole-body controller trained via RL for
humanoid robots. NaVILA [243] adopts a similar strategy, applying RL to convert velocity commands from the VLA
into torque control for a legged robot. A more advanced system, SLIM [265], targets a mobile manipulator comprising
a quadruped base and robotic arm. It first trains a teacher policy using RL with privileged inputs, such as footstep plans,
object placements, and subtask identifiers, to generate base and arm trajectories. This policy is then distilled into a
student VLA via imitation learning, enabling end-to-end mapping from images and language to actions. RPD [266]
takes a complementary approach, using a pre-trained VLA to guide exploration during RL. Here, the VLA acts as a
teacher, shaping the learning process rather than serving as a high-level controller.

In addition, LUMOS performs imitation learning in the latent space of a world model by employing reinforcement
learning guided by an intrinsic reward that quantifies the deviation from expert trajectories within the latent space.
DexTOG [235] generates a diverse set of grasp poses using a diffusion model and employs reinforcement learning to
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evaluate whether each candidate pose leads to task success. Through iterative fine-tuning with successful trajectories,
the diffusion model learns object-specific grasp poses that are well-suited for subsequent tasks.

Despite the growing number of VLA methods incorporating RL, most prior work remains limited to simulation or
simplified real-world setups, due to sample inefficiency, unsafe exploration, and computational inefficiency.

5.4 Training Stages

Training Vision-Language-Action (VLA) models typically involves multiple stages, each targeting a specific aspect
of learning. The pre-training aims to acquire general capabilities and promote transferability across diverse robotic
embodiments. When a pre-trained Vision-Language Model (VLM) is used as the backbone of a VLA model, it
must be adapted to the robotics domain to effectively ground language and visual understanding in action. This is
followed by a post-training, in which the model is further refined using high-quality robot demonstration data to
improve performance on specific downstream tasks. This section provides a stage-wise overview of representative
training strategies, highlighting common data sources, model backbones, and adaptation techniques used in recent
VLA systems.

5.4.1 Pre-training

Pre-training plays a pivotal role in shaping the generalization ability and semantic grounding of VLA models. This
subsection outlines key strategies and design choices in recent pre-training pipelines, highlighting how large-scale
multimodal data, powerful VLM backbones, and training stabilization techniques contribute to effective policy initial-
ization.

Data scale and source. The scale and heterogeneity of training data significantly impact the generalization ability of
VLA models across diverse scenes, objects, and tasks. Recent models increasingly leverage large-scale datasets that
combine robot demonstrations, web-scale vision-language corpora, and structured annotations to improve semantic
understanding and visuomotor grounding.

7o [21] is trained on millions of real-world trajectories collected across varied embodiments and tasks. Its successor,
0.5 [23], extends this approach by incorporating not only robotic data but also large-scale vision-language datasets
commonly used for object detection and visual reasoning (e.g., COCO [267], VQA [268]). The model is trained
with auxiliary cross-entropy losses for multiple tasks, including bounding box prediction, image captioning, subtask
language generation, and discrete action prediction.

Similarly, GrOOT N1 [24] incorporates an auxiliary bounding box loss to improve spatial localization and affordance
detection. These bounding box labels are obtained using OWL-ViT [144], allowing the model to learn from weakly
supervised visual data. GrOOT N1 further leverages egocentric human videos, from which latent action representations
are extracted to supervise the VLA model. Additionally, it introduces diverse synthetic trajectories generated in
simulation, which are transformed into realistic visual observations using the COSMOS world model [269], enhancing
the model’s capacity to learn long-horizon, multi-stage behaviors.

These approaches demonstrate a growing trend toward enriching VLA training data not only in scale but also in
structure and modality. By jointly training on action, grounding, and reasoning tasks, modern VLAs acquire richer
representations that support robust policy learning and generalization.

VLM backbones. A common practice in recent VLA models is to leverage vision-language models (VLMs) that
have been pre-trained on large-scale web data. This strategy enables models to inherit broad visual and linguistic
priors, including common sense knowledge, semantic grounding, and reasoning capabilities. By decoupling low-level
perceptual grounding from action policy learning, pre-trained VLMs provide a flexible foundation that can be adapted
to various robotic tasks with limited additional supervision. We now introduce a selection of representative VLM
backbones that have been employed in VLA models.

* PaLLM-E [38], developed by Google, has been used—along with PaLI-X [39]—as the backbone for RT-2 and its
successor VLA models.

¢ PaliGemma [51] combines Gemma [181] with SigLIP [47], and is used in 7y [21] and 7 5 [23] developed by
Physical Intelligence.

e PrismaticVLM [45] is based on LLaMA 2 [1] and combines it with DINOv2 [46] and SigLIP [47]. It is widely
used in current VLA models, including OpenVLA [18] and CogACT [104].

* Qwen2.5-VL [136], developed by Alibaba, combines Qwen2.5 LLM [270] with a ViT-based vision encoder. It
is used in a variety of VLA models such as NORA [271], Interleave-VLA [272], and CombatVLA [273].
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* LLaVA [274] integrates the LLaMA-based LLM Vicuna [180] with the vision encoder from CLIP [25] via an
MLP. It has been widely adopted in models such as OpenHelix [216], OE-VLA [275], and Rational VLA [215].

* Gemini 2.0 [276], developed by Google, includes variants such as Gemini Robotics-ER for robotic question
answering and Gemini Robotics, which extends its capabilities to VLA applications [277].

* Fuyu-8B [278]: QUAR-VLA [279] and MoRE [280],

e OpenFlamingo [61]: RoboFlamingo [61], DeeR-VLA [281], and RoboMM [220],
e BLIP-2 [3]: 3D-VLA [87],

e LLaMA3.2 [282]: FOREWARN [283],

¢ AnyGPT [284]: SOLAMI [197],

e Phi [183]: TraceVLA [285], UP-VLA [286], and HybridVLA [99],
* Molmo [287]: UAV-VLA [288],

e VILA [289]: NaVILA [243] and HAMSTER [214],

e InternVL [290] GO-1 [94],

* Eagle-2 [291]: GROOT N1 [24],

¢ Chameleon [292]: WorldVLA [140].

This demonstrates the extensive diversity in VLM backbones currently employed across the VLA landscape.

Gradient insulation. An emerging trend in training VLA models involves preventing gradient flow from the action
head into the vision-language backbone [293]. Allowing gradients from a randomly initialized action head to propagate
can compromise pre-trained representations, resulting in unstable and inefficient training. Prior work demonstrates that
this form of gradient insulation significantly improves both training stability and efficiency [293]. GROOT N1.5 [24]
also freezes the VLA model entirely, likely for similar reasons. Similarly, RevLA [294] also addresses catastrophic
forgetting by gradually reversing the backbone model weights, inspired by model merging.

Stability and efficiency heuristics. Re-Mix [295] adjusts the sampling weights of individual datasets based on excess
loss, which quantifies the remaining potential for policy improvement within each domain.

5.4.2 Post-training

In contrast to pre-training, which relies on large-scale and diverse datasets, post-training requires high-quality, robot-
and task- specific data. As full fine-tuning typically demands substantial computational resources, an alternative
strategy is to fine-tune only the action head while keeping the backbone weights frozen. Another approach is to use
Low-Rank Adaptation (LoRA) [296], which enables computationally efficient fine-tuning with minimal performance
degradation.

In addition, BitVLA [297] introduces a distillation-based approach to quantize the vision encoder, aiming to enable
memory-efficient training. Specifically, the vision encoder is compressed to 1.58 bits by distilling a full-precision
encoder into a quantized student model. This strategy achieves substantial memory savings with minimal performance
degradation, thereby facilitating efficient deployment on resource-constrained systems.

Freezing backbone vs. full fine-tuning. When adapting pre-trained VLMs for robotic tasks, a critical design choice
is whether to freeze the vision-language backbone or perform full fine-tuning. This decision involves fundamental
trade-offs across multiple dimensions.

(a) Computational efficiency: Freezing the backbone requires significantly less GPU memory and training time as
gradients only need to be computed for the action head, enabling training on consumer-grade GPUs. In contrast, full
fine-tuning demands substantial computational resources, often requiring large GPU clusters and extended training
periods, which limits accessibility for many researchers.

(b) Domain adaptation: Full fine-tuning excels by enabling end-to-end optimization that jointly learns perception and
control, allowing the model to adjust to robot-specific visual patterns and domain-specific knowledge. Frozen back-
bones, however, cannot adapt to these domain shifts, potentially creating a gap between pre-trained representations
and robotic perception requirements.

(c) Performance-resource trade-off: Full fine-tuning of VLA models often yields the highest task-specific perfor-
mance when sufficient data and compute are available, but it incurs substantial computational cost. To mitigate this,
parameter-efficient adaptation methods such as Low-Rank Adaptation (LoRA) [296] offer a compelling alternative.
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Figure 8: Structure of Section 6 and Section 7: robots used VLA research — including manipulator, hand/gripper,
mobile robot, quadruped robot, and humanoid robot; data collection methods — including teleoperation, proxy de-
vices, and human data collection; publicly available dataset — including human egocentric data, simulation data, and
real-world robot data; augmentation for vision, language, and action; various evaluation benchmarks.

For instance, OpenVLA [18] demonstrates that LoRA can achieve competitive performance while significantly reduc-
ing memory and compute requirements, enabling training on consumer-grade GPUs rather than large-scale clusters.
Recent work has also explored intermediate strategies, such as staged unfreezing or selective fine-tuning of specific
layers, to strike a balance between adaptation capability and efficiency.

(d) Knowledge preservation: Frozen backbones maintain the rich visual and linguistic representations learned from
web-scale data, preventing catastrophic forgetting of general vision-language capabilities. Full fine-tuning, while
allowing the model to specialize for robotic visual features and action-grounded language, risks degrading these pre-
trained representations, potentially losing valuable general knowledge that could benefit zero-shot generalization.

5.5 Inference

To address latency during real-world execution, Real-Time Chunking (RTC) [298] introduces an asynchronous action
generation strategy. RTC mitigates delays by fixing previously executed actions while generating subsequent actions
in the sequence. This method uses soft masking to maintain temporal consistency with past trajectories while enabling
dynamic replanning based on updated sensory inputs.

Furthermore, DeeR-VLA [299] is trained to enable action prediction at each layer of the transformer. If the differ-
ence between actions predicted from two consecutive layers is small, the remaining layers are skipped to accelerate
inference. VLA-Cache [300] improves inference speed by identifying static tokens and reusing previously computed
features from earlier steps.

6 Datasets

6.1 Data Collection for VLA
Training VLA models requires access to large volumes of high-quality data. This section outlines the primary data

collection strategies employed in VLA research. Note that data collection via simulation is discussed in Section 6.2;
here we focus on methods based on real devices.
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Teleoperation. In this approach, demonstrations are recorded in real time while a human operator directly controls
the robot, enabling the collection of high-quality trajectories. This method forms the basis of many VLA datasets. For
example, ALOHA [301] employs a unilateral teleoperation setup consisting of a dual-arm WidowX 250 as the leader
and a dual-arm ViperX-300 as the follower. The follower robot mimics the leader’s motions, allowing precise manip-
ulation data to be captured. Mobile ALOHA [302] extends this framework by mounting the system on a mobile base,
enabling the collection of mobile manipulation demonstrations. The ALOHA framework has evolved through multiple
iterations. ALOHA 2 introduces refined hardware components, such as upgraded grippers and gravity compensation
mechanisms, along with open-source hardware and simulation environments [303]. Building on this upgraded plat-
form, ALOHA Unleashed investigates large-scale imitation learning [304]. Furthermore, Bi-ACT [305] introduces
bilateral control to enable more responsive interaction between the leader and follower robots, while GELLO [306]
adapts the system by employing a scaled-down follower robot with proportionally adjusted link lengths.

In contrast to leader-follower approaches, which require robots on both the leader and follower sides, many prior works
have proposed methods to reduce both the burden on the human operator and the overall cost of the teleoperation
system. For instance, AnyTeleop [307] estimates the position and orientation of the human hands from a single
RGB camera using MediaPipe [308], and retargets this information to the robot via CuRobo [309] for teleoperation.
ACE [310] combines precise wrist tracking using an exoskeleton device with hand pose estimation from Mediapipe to
facilitate accurate teleoperation. Aiming for applications in humanoid robotics, Open-Television [311] utilizes hand
and head pose estimation via the Apple Vision Pro to enable both teleoperation and active-vision-based manipulation.
Bunny-VisionPro [312] also employs the Apple Vision Pro, with greater emphasis on haptic feedback and real-time
system integration.

In addition to these approaches, data collection can also be performed through more direct control methods such as
3D mice or game controllers. While these alternatives simplify the setup and eliminate the need for wearable or
vision-based pose estimation systems, they may offer lower fidelity in replicating natural human motions.

Data collection using proxy devices. Controlling a physical robot directly poses significant challenges for scaling
data collection. By decoupling human motion from physical robot control, recent approaches enable more intuitive,
flexible, and scalable data collection through the use of proxy devices. For example, UMI [313] is a handheld gripper
equipped with a GoPro camera, whose 6-DoF trajectory is estimated using visual SLAM. The collected data can be
used to train a policy, and by later mounting UMI as the robot’s end-effector, the robot can reproduce the demonstrated
motions without being physically involved during data collection. Recently, LBM [314] leverages UMI to collect 32
hours of demonstrations. DexUMI [315] extends this concept to dexterous manipulation by replacing the simple
gripper with a five-fingered robotic hand. The human demonstrator wears an exoskeleton glove equipped with the
same cameras and tactile sensors as the target robot, allowing the recorded hand motions to be faithfully transferred.

Building on similar principles, Dobb-E [316] uses a rod-shaped device resembling the end-effector of Hello Stretch to
capture human demonstrations. RUMs [317] further enhances this paradigm by increasing the diversity of collected
tasks, incorporating failure detection mechanisms, and improving the network architecture. These improvements
enable the robot to generalize to a wide range of tasks through pre-training alone. DexCap [318] is the device for
data collection by mounting Realsense T265 cameras on Rokoko EMF gloves for both hands, along with additional
Realsense T265 and L515 sensors on the chest, enabling SLAM-based 6-DOF wrist pose estimation and glove-based
hand pose tracking. In contrast, DexWild [319] addresses the wiring complexity and SLAM calibration challenges of
DexCap by using EMF gloves in combination with palm-facing cameras on both hands and ArUco marker tracking
via external cameras.

Human data collection. This approach involves collecting data by recording natural human behavior without relying
on proxy devices that mimic the robot’s end effector. The simplest form of this method involves mounting a GoPro
camera or microphone on the user’s head to capture first-person visual and auditory data, often supplemented with
inertial measurement unit (IMU) or gaze information. This technique has been widely adopted in large-scale egocentric
datasets such as Ego4D and EPIC-KITCHENS [130,155,156]. Recent advances in wearable sensing technologies have
enabled more naturalistic and scalable data collection using compact smart glasses such as Meta’s Project Aria. These
devices have facilitated the development of enriched datasets including Ego Exo4D, HOT3D, HD EPIC, and Aria
Everyday Activities [320-323]. Leveraging these datasets, several prior works have trained robot policies directly from
human demonstration data. For instance, EgoMimic and EgoZero learn visuomotor control by imitating egocentric
human behavior [324,325]. Similarly, other studies use data collected with devices such as the Apple Vision Pro to
train humanoid robot policies based on natural human motion [326].

Data collection pipeline. Data collection plays a pivotal role in training VLA models. These models require large-
scale, high-quality datasets, and the data acquisition pipeline must be carefully designed to ensure both efficiency and
diversity. In the case of RT-1 [16], a large-scale real-robot dataset is collected using a framework that samples in-
structions and randomized initial states from a curated instruction set. This approach enabled the collection of demon-

20



Table 1: Recent real-world robot datasets used in VLA research. Here, Skill denote atomic action primitives (e.g.,
pick, place, reach), whereas Task correspond to instruction-level goals. All statistics are reported as in the original
papers; the table is adapted from prior works [11,330,333,335].

Name Episodes Skill Task Modality Embodiment Collection
QT-Opt [336] 580K 1 (Pick) NA RGB KUKA LBR iiwa Learned
MT-Opt [337] 800K 2 12 RGB, L 7 robots Scripted, Learned
RoboNet [338] 162K NA NA RGB 7 robots Scripted
BridgeData [339] 72K | 4 71 RGB, L WidowX 250 Teleop
BridgeData V2 [340] 60.1K 13 NA RGB-D, L WidowX 250 Teleop
BC-Z [341] 260K | 3 100 RGB, L Google EDR Teleop
Language Table [329] 413K 1 (Push) NA RGB, L XArm Teleop
RH20T [335] 110K 42 147 RGB-D,L,F A 4 robots Teleop
RT-1[16] 130K 12 700+ RGB, L Google EDR Teleop
OXE [17] 1.4M 527 160,266 RGB-D, L 22 robots Mixed
DROID [330] 76K | 86 NA RGB-D, L Franka Teleop
FuSe [198] 27K | 2 3 RGB,L, T, A, WidowX 250 Teleop
RoboMIND [333] 107K 38 479 RGB-D, L 4 robots Teleop
AgiBot World [94] IM 87 217 RGB-D, L AgiBot G1 Teleop

strations across a broad range of tasks and environments, with human operators executing the sampled instructions
to generate diverse and balanced data. In RoboTurk [327], a 6-DOF teleoperation interface was developed using an
iPhone, enabling the collection of large-scale robot manipulation demonstrations via a crowdsourcing platform [328].

Furthermore, prior work [329, 330] demonstrates the effectiveness of annotating pre-collected datasets with natural
language. For example, the Language Table dataset [329] collects teleoperated trajectories and subsequently adds lan-
guage annotations via crowdsourcing, resulting in a large-scale dataset with approximately 600,000 language-labeled
trajectories. Similarly, DROID [330] conducts distributed data collection across 18 research institutions, gathering
76,000 trajectories and 350 hours of interaction data over 564 scenes and 86 tasks, which are later annotated with
natural language through a crowdsourcing platform.

However, since human annotation is costly, recent trends increasingly leverage foundation models such as VLMs to
automate the annotation process. ECoT [86] and EMMA-X [331] combine object detection and gripper localization
using Grounding DINO [175] and SAM [145], and high-level plan and subtask generation using Gemini 1.0 to produce
automatic annotations. NILS [332] is a framework that segments long-horizon robot videos and generates language
annotations without human intervention. It integrates multiple VLMs to detect keystates based on object state changes
and gripper motions, and employs LLMs to generate natural language instructions. RoboMIND [333] also employs
an annotation system based on Gemini [334], and demonstrates substantial performance improvements through pre-
training with a VLA model.

While such methods are more cost-effective and scalable than human post-hoc annotations, they face challenges such
as fine-grained scene understanding and hallucinations. Particularly in methods like ECoT that rely solely on text,
inconsistencies with actual visual context are more likely to occur. Approaches grounded in visual input, such as
EMMA-X, or those integrating multiple perceptual modalities, such as NILS, have proven effective in addressing
these issues.

6.2 Datasets for VLA

We outline key datasets used in the pre-training of VLA models. Since the development of VL As builds upon advances
in LLMs and VLMs, a wide range of web-based datasets are leveraged. In this section, we focus specifically on datasets
used for pre-training of VLA models, grouped into three main categories. Datasets used for post-training are typically
proprietary or integrated into evaluation benchmarks such as CALVIN [342] and LIBERO [343], and are therefore
excluded from this summary.

Human datasets. Collecting human data is significantly more scalable than collecting robotic data, as it does not
require access to physical robots, precise calibration, or safety-critical execution environments. While third-person
visual data is still used, first-person data has become particularly important for VLA pre-training because it more
closely approximates the perceptual input received by real-world robots, especially those equipped with head-mounted
sensors or human-like embodiments. As a result, first-person visual data is now widely adopted as a key resource for
pre-training VLA models. For example, Ego4D [130] is one of the largest and most comprehensive egocentric video
datasets, comprising over 3,000 hours of head-mounted RGB footage collected from more than 800 participants across
74 cities in 9 countries. Other notable examples include EPIC-KITCHENS [155, 156], which documents everyday
kitchen activities, and HOI4D [344], which captures fine-grained human-object interactions. Several datasets focus
specifically on manipulation tasks. OAKINK2 [345] and H20O [346] capture bimanual object manipulation using
RGB-D sensors and motion capture systems. ARCTIC [347] centers on interaction with articulated objects through
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dexterous bimanual manipulation, while EgQoPAT3D [348] focuses on human action target prediction from egocentric
views.

Moreover, the advent of smart-glass-based recording devices has enabled more naturalistic and unobtrusive egocentric
data collection (see Section 6.1). Notable examples include Aria Everyday Activities [323]; Ego-Ex04D [320], which
integrates egocentric and exocentric perspectives; HOT3D [321], focused on fine-grained hand-object tracking; and
HD-EPIC [322], which extends egocentric cooking data. These datasets are frequently used for pre-training VLA
models, often via latent action prediction approaches such as LAPA [22]. Although not egocentric, large-scale video-
language datasets like HowTo100M [349], Something-Something V2 [350], and Kinetics-700 [351] are also used
for model pre-training and are sometimes adapted for VLA-related tasks. As VLA research increasingly employs
humanoid robots and systems with human-like sensory configurations, egocentric datasets, particularly those capturing
natural, goal-directed behavior, are expected to play an increasingly vital role.

Simulation datasets. Simulation environments have long been used to generate robotic datasets in a scalable, safe,
and cost-effective manner. They support controlled data collection and flexible manipulation of scene configurations,
making them particularly suitable for imitation learning and large-scale model pre-training. For example, Robo-
Turk [327] consists of task demonstrations on Sawyer robots within the MuJoCo physics engine [352], collected via
remote human teleoperation over the cloud. However, collecting large-scale demonstration data in simulation, par-
ticularly via teleoperation, can still be time-consuming. To mitigate this limitation, MimicGen [353] introduces a
framework for generating large-scale datasets from a small number of expert demonstrations. It decomposes demon-
strations into object-centric subtasks and synthesizes new trajectories by transforming and recomposing them into
novel scenes. DexMimicGen [354] extends this approach to more complex embodiments, such as dual-arm robots and
multi-fingered hands.

In parallel, large-scale video world models such as COSMOS [269] have been developed to generate diverse imagined
trajectories, providing rich and scalable training data for VLA models.

Although simulation played a central role in early VLA research, its dominance has declined with the increasing avail-
ability of large-scale real-world robot datasets (see the next category, which covers real robot datasets). Nonetheless,
simulation remains a powerful tool for producing diverse, controllable data—particularly when real-world collection
is impractical or cost-prohibitive.

Real robot datasets. Real-world robot datasets play a crucial role in the development and evaluation of VLA mod-
els. Collected on physical robot hardware, these datasets offer diverse embodiments, realistic interactions, and rich
sensory inputs that are essential for training models capable of generalizing to real-world tasks. MIME [355] is one
of the first large-scale robotic datasets. It contains 8.2K trajectories across 20 tasks, consisting of paired human
demonstrations and kinesthetic teaching of a Baxter robot performed by humans. Concurrently, QT-Opt [336] has
been introduced, comprising 580,000 grasp attempts collected over four months using seven KUKA LBR iiwa robotic
arms. MT-Opt [337], an extension of QT-Opt, expands the task scope beyond grasping to support a wider range of
manipulation skills. RoboNet [338] contains 162, 000 trajectories gathered across seven robot types—Sawyer, Baxter,
WidowX, Franka Emika Panda, KUKA LBR iiwa, Fetch, and Google Robot. Although the trajectories are generated
using random or rule-based actions rather than expert demonstrations, the dataset supports research on generalization
across diverse platforms and environments. BridgeData [339] is collected via VR teleoperation using an Oculus Quest
2 and a WidowX 250 robot. It consists of 7,200 trajectories across 10 environments and 71 tasks. An extension of
this work, BridgeData V2 [340], scales the dataset to 60, 000 trajectories across 24 diverse environments. BC-Z [341]
involves 12 Google Robots operated by seven human teleoperators performing over 100 manipulation tasks. Addi-
tional data are collected through policy executions with human oversight, resulting in 25,900 trajectories. Language
Table [329] contains 600, 000 block manipulation trajectories (413K for real-world and 181K for simulated trajec-
tories) paired with natural language instructions. The data are collected through long, goal-free demonstrations and
annotated via crowdsourcing to support instruction-conditioned training. RH20T [335] provides multimodal data col-
lected from four robots (Franka Emika Panda, URS5, KUKA LBR iiwa, and Flexiv Rizon) across 147 tasks and seven
configurations. Unlike earlier datasets, it includes synchronized RGB-D, 6-axis force-torque, joint torque, and audio
signals—supporting multimodal perception and control. RT-1 [16] comprises 130,000 real-world robotic demonstra-
tion trajectories collected over 17 months using 13 Google Robots. It serves as the foundation for the RT-series of
transformer-based VLA models for real-time, instruction-conditioned behavior. Finally, Open-X Embodiment (OXE)
dataset [17] unifies many of these datasets, including RT-1, BC-Z, BridgeData, and Language Table—into a standard-
ized format using the RLDS schema [356]. Developed through a large-scale collaboration involving 21 institutions
and 173 authors, OXE dataset represents one of the most comprehensive and widely adopted real-robot VLA datasets
to date.

Several additional real-world robot datasets have been released to further advance VLA research. DROID [330] is a
large-scale dataset comprising 76, 000 trajectories collected across 13 institutions using a standardized hardware setup.

22



Each participating lab used a Franka Emika Panda arm equipped with a Robotiq 2F-85 gripper, two external stereo
cameras, and a wrist-mounted camera. Unlike Open X-Embodiment dataset, which aggregates data from heteroge-
neous robot platforms, DROID ensures consistency across environments and embodiments, making it well-suited for
benchmarking. FuSe [198] provides 27,000 multimodal trajectories collected using a WidowX 250 platform. The
robot is outfitted with external cameras, a wrist-mounted camera, DIGIT tactile sensors, microphones, and an IMU,
enabling rich cross-modal learning for VLA tasks. RoboMIND [333] offers 107,000 trajectories collected from a
diverse set of robot embodiments, including single-arm, dual-arm, humanoid, and dexterous-hand configurations. The
dataset emphasizes diversity in morphology and manipulation strategies, supporting research in generalization and
transfer. AgiBot World Dataset [94] is a massive-scale dataset comprising 1 million trajectories collected using over
100 AgiBot G1 robots. Its unprecedented scale enables training of large VLA models under highly diverse condi-
tions. In addition to these major releases, several task-specific or platform-specific datasets have been introduced,
including Task-Agnostic Robot Play [357,358], Jaco Play [359], Cable Routing [360], Berkeley Autolab URS [361],
TOTO [362], and RoboSet [363]. Navigation-focused VLA datasets have also emerged, such as SACSoN [364],
SCAND [365], RECON [366], and BDD100K [367], which support instruction-following and goal-directed behaviors
in mobile platforms. Finally, specialized datasets such as RoboVQA [368] target robot-specific question answering,
further broadening the scope of VLA applications beyond manipulation and navigation.

6.3 Data Augmentation for VLA

Given the high cost of collecting datasets, various data augmentation methods have been developed to expand existing
datasets. These approaches span multiple modalities, including vision, language, and action.

Vision augmentation. In most computer vision tasks, augmentation techniques such as rotation, cropping, and scal-
ing are commonly used to improve generalization. However, in robotics, where the robot’s embodiment and its spatial
relationship to the camera are critical, such transformations can distort these relationships and negatively affect perfor-
mance. To address this, recent methods have proposed using image generation models, such as Stable Diffusion [137],
to perform embodiment-aware augmentations. CACTI [369] leverages Stable Diffusion to modify a specific region
of images to augment a small, yet high-quality dataset. GenAug [370] introduces more sophisticated visual aug-
mentation by leveraging Stable Diffusion to apply three types of transformations: altering object textures, inserting
task-irrelevant distractors, and modifying backgrounds. These augmentations aim to improve policy robustness by
increasing visual diversity while preserving task-relevant semantics. ROSIE [371] builds on CACTI and GenAug
by using an LLM, OWL-VIiT [144], and Imagen Editor [372] to automatically identify and modify masked regions
based on text prompts, enabling controlled edits to target objects, backgrounds, or the insertion of new objects. The
augmented data is used to train RT-1 [16]. DreamGen [110] utilizes a video world model to generate diverse visual
variations, paired with an inverse dynamics model (IDM) to infer the corresponding actions. This combination en-
ables the synthesis of training data, facilitating policy learning in novel environments and enhancing generalization.
In contrast, MOO [57] forgoes explicit visual augmentation and instead disentangles object and skill representations
using a vision-language model (VLM), allowing policies to generalize to unseen object-skill combinations from lim-
ited data. It addresses visual variability implicitly by leveraging the broad generalization capabilities of pre-trained
VLMs. Moreover, BYOVLA [373] extracts and inpaints task-irrelevant regions in image observations during runtime,
aiming to enhance robustness against visual distractions.

Language augmentation. DIAL [374] starts with a small, manually labeled seed set of trajectory-instruction pairs. A
VLM is trained on this seed set to compute similarity between trajectories and instructions. Simultaneously, an LLM
generates diverse paraphrases of the seed instructions, forming a large pool of candidates. These are then matched to
the remaining unlabeled trajectories using the trained VLM, and the top-k most similar instructions are assigned. The
resulting dataset is used to train RT-1 [16].

Action augmentation. Since actions are directly tied to the robot’s physical behavior and embodiment, augmenting
action data is generally challenging. A common approach to address this challenge is dataset expansion through
interactive methods such as DAgger [375], which iteratively collects expert actions in states visited by the learned
policy. Similarly, CCIL [376] generates corrective data when a policy encounters out-of-distribution states by learning
a locally smooth dynamics model. It synthesizes actions that guide the robot from novel states back to expert-visited
ones, and the resulting corrective data is combined with the original demonstrations to refine the policy.

7 Review of Real-World Robot Applications

In this section, we summarize key practical aspects of VLA research, including the types of robots used, data collection
methodologies, publicly available datasets and augmentation techniques, and the evaluation protocols applied to assess
model performance.
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7.1 Robot for VLA

In this section, we present an overview of the types of robots commonly employed in VLA research.

Manipulator. Robotic manipulators are the most commonly used robots in VLA research, encompassing both single-
arm and dual-arm configurations. Single-arm robots used in the prior works reviewed in this survey include: Franka
Emika Panda, Franka Research 3, URS, URSe, UR3, UR3e, UR10, Kinova Gen3, Kinova Jaco 2, Sawyer, KUKA
LBR iiwa 14, UFactory xArm, DENSO Cobotta, FANUC LR Mate 200iD, Realman RM65-B, Realman RM75-6F,
AgileX PiPER, Unitree Z1 Pro, Dobot, Flexiv Rizon, AIRBOT Play, ARX, DLR SARA [377], WidowX 250 6DoF,
ViperX 300 6DoF, SO-100/101, and PAMY?2 [378]. These manipulators typically feature 5, 6, or 7 degrees of freedom
(DoFs). The joint configurations and link lengths vary across these manipulators. PAMY?2 uses pneumatic actuation,
reflecting the diversity of robotic embodiments. In addition, several systems (e.g., AgileX PiPER, ARX, Franka Emika
Panda, UFactory xArm, UR5e, AIRBOT Play, ALOHA [301], and ALOHA?2 [303] adopt a bimanual configuration
by placing two arms side by side. WidowX, ViperX, ALOHA, SO-100/101, and PAMY2 are fully open-source in
hardware, allowing researchers to flexibly modify or extend their physical embodiment. These manipulators are used
to perform a wide range of tasks, including object grasping and relocation, assembly, manipulation of deformable
objects, and peg-in-hole insertion.

Hand / Gripper. This category refers to the hands and grippers that serve as end-effectors mounted on the manip-
ulators described above. Hands used in prior works in VLA include the ROBOTERA Xhand, PSYONIC Ability
Hand, Inspire Robots RH56, Shadow Hand, PsiBot GO-R, Robotiq 2F-85/140, LEAP Hand, and UMI. These vary
in design: the LEAP Hand [379] has four fingers; the Robotiq Gripper and UMI [313] are two-fingered; the others
are five-fingered. Some systems also use suction cups or task-specific grippers, as in Shake-VLA [380]. Platforms
such as ALOHA, ARX, and PiPER typically include two-fingered grippers by default. The LEAP Hand and UMI
are open-source, allowing easy hardware modification. While two-fingered grippers are suited for grasping, four- and
five-fingered hands enable tool use and in-hand manipulation.

Mobile robot. Mobile robots in VLA research include both wheeled platforms and mobile manipulators that combine
robotic arms with mobile bases. Jackal and TurtleBot 2 are examples of systems that rely exclusively on wheeled
locomotion and do not incorporate manipulation capabilities. In contrast, mobile manipulators exhibit diverse con-
figurations, including single-arm platforms such as Hello Stretch, Google Robot, and LoCoBot, as well as dual-arm
systems like Mobile ALOHA, PR2, Fibocom, and AgiBot G1. LoCoBot and TurtleBot 2 are also notable for their fully
open-source hardware, which facilitates embodiment customization and experimentation. Mobile platforms enable lo-
comotion and environmental interaction capabilities beyond those afforded by stationary arms or grippers, supporting
tasks that involve navigation and dynamic scene engagement. Some models, such as RT-1, are capable of performing
navigation and manipulation concurrently.

Quadruped robot. Quadruped robots, characterized by their animal-like locomotion, have been increasingly consid-
ered in VLA research due to their ability to navigate unstructured and uneven environments. Unitree Al, Gol, Go2,
B1, Boston Dynamics Spot, and ANYmal are frequently used. These are all commercially available systems capable
of traversing complex terrain using RL-based control policies. These platforms not only provide locomotion but can
also be equipped with manipulators to support a wide range of manipulation tasks.

Humanoid robot. Humanoid robots, characterized by body structures resembling those of humans, represent another
category of platforms explored in VLA research. In prior works, Fourier GR-1, Unitree G1, Unitree H1, and Booster
T1 are often used. These systems typically possess two legs, two arms, and five-fingered hands attached to their end
effectors. Their human-like morphology makes them well-suited for operating in spaces designed for humans and
facilitates compatibility with VLAs trained on human motion datasets.

7.2 Evaluation for VLA

Evaluation metrics for VLA models remain poorly defined, particularly in real-world settings. Assessing generaliza-
tion on physical robots is challenging due to differences in embodiment, safety concerns, and limited reproducibility.
Consequently, most evaluations are conducted in simulation, where standardized environments and benchmarks facil-
itate fair comparisons across methods. Below, we introduce representative simulation environments and their variants
commonly used for evaluating and comparing VLA models.

MuJoCo. Several simulation environments have been developed on top of MuJoCo [352] to support research in
robotic manipulation. For example, robosuite [381], a modular simulation framework in which robots, arenas, and
task objects are composed using MJCF files, provides 11 manipulation tasks.
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Table 2: Benchmarks for VLA evaluation. This table shows various simulation environments used for evaluating
VLA models with their key characteristics. Task types include Navigation (Nav), Manipulation (Manip), and Whole-
Body Control (WBC). Observation modalities include RGB-D (RGB + Depth), S (Semantic segmentation), and PC
(Point Cloud). The Scenes/Objects column indicates the number of available scenes and objects respectively.

Name Task Scenes/Objects Observation Physics Built Upon Description
robosuite [381] Manip NA/10 RGB-D, S MuJoCo NA Modular framework, 11 tasks
robomimic [382] Manip NA/NA RGB MuJoCo | robosuite Offline learning, 8 tasks
RoboCasa [383] Manip 120/2.5K RGB MuJoCo robosuite 100 kitchen tasks, photorealistic
LIBERO [343] Manip NA /NA RGB MuJoCo robosuite 130 tasks in 4 task suites
Meta-World [384] Manip 1/80 Pose MulJoCo NA 50 Manip tasks for Meta-RL
LeVERB-Bench [385] Nav, WBC 4 /NA RGB PhysX Isaac Sim Humanoid control
ManiSkill [386] Manip NA /162 RGB-D, PC, S PhysX SAPIEN 4 tasks, 36K demos
ManiSkill 2 [387] Manip NA/2.1K RGB-D, PC PhysX ManiSkill Extended task diversity
ManiSkill 3 [388] Nav, Manip, NA/NA RGB-D, PC, S PhysX ManiSkill 2 GPU-parallelized simulation
WBC
ManiSkill-HAB [389] Manip 105/92 RGB-D PhysX ManiSkill 3, HAB tasks from Habitat 2.0
RoboTwin [390,391] Manip NA /731 RGB-D PhysX gg‘f’]fﬁthlzo Dual-arm tasks
Ravens [26] Manip NA/NA RGB-D PyBullet | NA 10 tabletop tasks
VIMA-BENCH [31] Manip NA /29 RGB, S PyBullet | Ravens 17 multimodal prompt tasks
LoHoRavens [392] Manip 1/3 RGB-D PyBullet | Ravens Long-horizon planning
CALVIN [342] Manip 4717 RGB-D PyBullet | NA Long-horizon lang-cond tasks
Habitat [393] Nav 185/ NA RGB-D, S Bullet NA Fast, Nav only
Habitat 2.0 [394] Nav, Manip 105792 RGB-D Bullet Habitat Mobile manipulation (HAB)
Habitat 3.0 [395] Nav, Manip 211/ 18K RGB-D Bullet Habitat 2.0 Human avatars support
RLBench [396] Manip 1728 RGB-D, S PyBullet V-REP Tiered task difficulty
THE COLOSSEUM [397] Manip 17107 RGB-D PyBullet RLBench 20 tasks, 14 env variations
AI2-THOR [398] Nav, Manip NA /118 RGB-D, S Unity NA Object states, task planning
CHORES [399] Nav 191K / 40K RGB Unity AI2-THOR Shortest-path planning
SIMPLER [400] Manip 4717 RGB PhysX SAPIEN, Real-to-sim evaluation
RoboArena [401] Manip NA /NA RGB Real II\?% ¢ Sim Distributed real-world evaluation

Building on robosuite, robomimic [382] introduces a systematic benchmark for evaluating learning from demonstra-
tions in robotic manipulation. The robomimic benchmark includes 8 tasks performed using a Franka Emika Panda
robot.

RoboCasa [383] further extends robosuite by incorporating large-scale, photorealistic scenes that span 100 tasks across
a variety of robot platforms, enabling broader generalization and transfer learning studies. Currently, the most widely
used benchmark for evaluating VLA models is LIBERO [402], which is designed for language-conditioned manipu-
lation tasks. It provides 4 task suites comprising a total of 130 tasks, all executed by a Franka Emika Panda robot:
LIBERO-SPATTAL focuses on spatial reasoning between objects, LIBERO-OBJECT targets object category recog-
nition, LIBERO-GOAL evaluates understanding of object manipulation goals, and LIBERO-100 integrates the three
previous suites to assess compositional generalization. Furthermore, Meta-World [384] is another simulation environ-
ment built on MuJoCo, designed to evaluate multi-task and meta-reinforcement learning. It includes 50 distinct tasks
performed using a Sawyer robotic arm, enabling evaluation of generalization across diverse manipulation skills.

PhysX. IsaacLab [403] is a GPU-accelerated framework built on IsaacSim, which employs PhysX as its underlying
physics engine. It provides a comprehensive suite of tools for robot learning, including a diverse set of robots, envi-
ronments, and sensors, along with photorealistic rendering capabilities. LeVERB-Bench [385], also built on IsaacSim,
focuses on full-body humanoid control and includes 154 vision-language tasks and 460 language-only tasks.

Moreover, ManiSkill [386-388], built on the SAPIEN simulation platform [404], whose underlying physics engine is
also based on PhysX, serves as a comprehensive benchmark for learning object manipulation skills from 3D visual
input. It includes a wide range of tasks involving articulated and deformable objects, mobility, and diverse robot em-
bodiments, and provides large-scale demonstration data with support for efficient, high-quality simulation. ManiSkill-
HAB [389] is a benchmark focused on object rearrangement tasks that follow the Home Assistant Benchmark (HAB)
introduced in Habitat 2.0 [394]. In addition, several other benchmarks have been developed on SAPIEN, such as Robo-
CAS [405], which evaluates robotic manipulation in complex object arrangement environments, and DexArt [406],
which focuses on manipulation of articulated objects using multi-fingered hands. More recently, RoboTwin [390,391]
has been proposed as a benchmark for dual-arm manipulation, offering 50 tasks, 731 objects, and 5 distinct embodi-
ments.

Bullet. Ravens [26] is a benchmark of 10 tabletop manipulation tasks implemented using PyBullet [407]. VIMA-
BENCH [31] extends this benchmark with 17 tasks that allow multi-modal prompt-based task specification. LoHo-
Ravens [392] is another extension that evaluates long-horizon planning capabilities in tabletop manipulation scenarios.
Moreover, CALVIN [342] provides a simulation and benchmark for long-horizon manipulation based on natural lan-
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guage instructions, which includes 34 manipulation tasks performed by a Franka Emika Panda robot. In addition,
Habitat [393-395] is a simulation framework primarily developed by Meta. Habitat 1.0 [393] provides a simulation
platform specialized for visual navigation tasks. Habitat 2.0 [394] extends this to mobile manipulation tasks and intro-
duces the Home Assistant Benchmark (HAB). Further, Habitat 3.0 [395] expands the framework to support not only
robots but also human avatars.

V-REP. RLBench [396] is the first large-scale benchmark for imitation and reinforcement learning, built using V-
REP [408] and PyRep [409]. It contains 100 manipulation tasks using the Panda robot. THE COLOSSEUM [397],
built on top of RLBench, is a benchmark designed to systematically evaluate the generalization capabilities of robotic
manipulation policies under environment variations. THE COLOSSEUM includes 20 manipulation tasks with 14
types of environment perturbations.

Unity. AI2-THOR is a photorealistic, interactive 3D simulation environment built on the Unity engine, offering
four task suites, such as iTHOR, RoboTHOR, ProcTHOR-10K, and ArchitecTHOR [398,410,411], that collectively
encompass a diverse range of indoor environments. Moreover, SPOC [399] introduces CHORES, an extension of
AI2-THOR designed as a benchmark for shortest-path planning in navigation tasks.

Miscellaneous. While not strictly simulation-based benchmarks, several studies have proposed evaluation protocols to
assess the capabilities of VLA models. VLATest [412] systematically evaluates the impact of various factors on VLA
model performance, including the number of confounding objects, lighting conditions, camera poses, unseen objects,
and mutations in task instructions. Moreover, several works aim to improve robustness against adversarial attacks [413,
414] and enhance interpretability by probing the latent representations of VLA models to uncover symbolic structures
corresponding to object properties, spatial relations, and action states [415].

Toward realistic and scalable evaluation for VLA. There is increasing emphasis on evaluation under conditions
that closely resemble the real world, leading to the development of both realistic simulation benchmarks and scalable
systems for distributed real-world evaluation of VLA models. SIMPLER [400] enables the evaluation of policies
trained on real-world data within simulation by minimizing visual and control domain gaps, achieving high correlation
between simulation and real-world performance. RoboArena [401] is a distributed framework for large-scale, fair, and
reliable evaluation of VLA models in the real world. It conducts pairwise comparisons across a network of robots
deployed at seven universities, with results aggregated by a central server to produce global rankings. This system is
built on the DROID platform.

7.3 Real-world Applications

This section provides concrete examples of how the previously introduced robotic platforms, including manipulators,
hands, mobile robots, quadrupeds, and humanoids, are employed in the development and evaluation of VLA models.

Manipulator. Manipulators represent the most widely used robotic platforms in VLA research. They are employed
across a diverse set of tasks, including object grasping and relocation, assembly, deformable object manipulation,
and peg-in-hole insertion. Both single-arm and more complex dual-arm robots are commonly utilized, enabling a
broader range of dexterous manipulation tasks. Notable demonstrations in this domain include Shake-VLA [380],
which performs cocktail mixing using dual-arm coordination, and RoboNurse-VLA [205], which automates surgical
instrument handovers in clinical environments.

Hand / Gripper. Hands and grippers, commonly used as end-effectors on manipulators, enable a wide range of
manipulation tasks. Two-fingered grippers are particularly well suited for object grasping, while more dexterous four-
and five-fingered robotic hands facilitate tool use and in-hand manipulation. For instance, GraspVLA [100] develops
a VLA model for object grasping using a two-fingered gripper. In contrast, DexGraspVLA [75] leverages a multi-
fingered robotic hand to construct a VLA model capable of performing more delicate and precise grasping tasks.

Mobile robot. Mobile robots are primarily utilized in VLA models for navigation-related tasks [416]. Beyond nav-
igation, models such as RT-1 [16] are capable of generating both arm and base motions for mobile manipulators,
robots that integrate a mobile base with a robotic arm. The VLA framework has also been extended to other mobile
domains. For instance, aerial robots such as the DJI Tello are used in UAV-based VLA research, with works includ-
ing UAV-VLA [288], RaceVLA [417], and CognitiveDrone [418] focusing on autonomous flight. Similarly, VLA
applications in autonomous driving have been explored in OpenDriveVLA [226], ORION [174], CoVLA [89], and
OccLLaMA [225]. These developments demonstrate the adaptability of VLA systems across a diverse range of mobile
robotic platforms.

Quadruped robot. Quadruped robots enable more diverse and versatile navigation compared to wheeled mobile
robots due to their ability to traverse uneven, unstructured, and dynamic terrains. Several prior works, including
TrackVLA [105,243], NaVILA [243], and CrossFormer [419], successfully demonstrate robust navigation capabilities,
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including deployment in the wild. Furthermore, Track2Act [420] and VidBot [159] utilize Boston Dynamics Spot
equipped with a manipulator for integrated navigation and manipulation in home environments. SLIM [265] similarly
employs a Unitree Gol equipped with a mounted WidowX 250 arm to perform multimodal tasks, such as grasping
objects from the ground while navigating uneven terrain.

Humanoid robot. Humanoids have gained significant attention in VLA research, because their human-like morphol-
ogy offers practical advantages for real-world deployment, as most environments, tools, and interfaces are designed
for human use, making task transfer and embodiment alignment more straightforward. NaVILA [243] demonstrates
robust locomotion capabilities in tightly controlled laboratory settings. In contrast, EgoVLA [421] and GO-1 [94]
focus on manipulation tasks commonly encountered in household environments, including picking, placing, pouring,
and folding.

8 Recommendations for Practitioners

Drawing on insights from recent VLA research, this section provides actionable recommendations for practitioners
seeking to design, train, and deploy VLA models in real-world robotic systems. We highlight practical strategies
across data collection, architecture selection, and model adaptation.

Prioritize diverse and high-quality datasets. Robust generalization across tasks, objects, and embodiments relies on
training with large-scale, high-quality datasets that encompass vision, language, and action modalities. Practitioners
should aim to collect or utilize datasets that offer broad task coverage, environmental variability, and embodiment
diversity. Such diversity is essential for improving the robustness and transferability of VLA policies.

Prefer continuous action generation via generative methods. While it is increasingly well established in recent liter-
ature, generating continuous actions, rather than relying on discretized tokens, remains critical for achieving smooth
and precise robot behavior. Practitioners are encouraged to adopt generative approaches such as diffusion or flow
matching to enable high-fidelity control in real-world settings.

Try gradient insulation during pre-training. Allowing gradients from randomly initialized action heads to propagate
into pre-trained VLM backbones can degrade the quality of learned representations that already capture common-sense
knowledge. To stabilize training and preserve the semantic knowledge in the backbone, practitioners are encouraged to
freeze the backbone or apply gradient insulation mechanisms. This approach has been shown to improve both training
efficiency and final performance.

Begin with lightweight adaptation methods. Full fine-tuning of large VLA models is often computationally pro-
hibitive. As a first step, practitioners, who do not have access to a GPU cluster, can fine-tune only the action head while
keeping the backbone frozen. Alternatively, methods such as LoRA enable parameter-efficient fine-tuning, offering a
favorable trade-off between performance and resource consumption.

Incorporate world models or latent action learning for scalability. In scenarios involving humanoid robots, incor-
porating human video data during pre-training can be particularly advantageous due to the similarity in embodiment.
However, as such datasets typically lack explicit action annotations, it is beneficial to learn latent action representa-
tions that can be used as surrogate action targets during pre-training. In addition, the predictive capabilities of world
models can support more effective planning and reasoning, especially in manipulation tasks. By anticipating future
observations, world models facilitate better long-horizon control and multimodal grounding, as demonstrated in prior
work such as FLARE [139].

Embrace multi-task learning to enhance representations for action generation. While VLMs pre-trained on web-
scale data offer strong semantic grounding, their representations are not always directly suited for downstream control.
Incorporating auxiliary tasks such as affordance estimation, keypoint detection, future state prediction, and segmen-
tation for a target object encourages the model to learn representations that are better aligned with the requirements
of action generation. These tasks support spatial reasoning, temporal prediction, and physical interaction modeling,
ultimately improving the model’s ability to translate perception into effective control.

9 Future Research Direction

9.1 Data Modality

While several prior works have attempted to integrate additional modalities such as audio, tactile sensing, and 3D
point clouds into VLA models, collecting large-scale datasets with such modalities remains a significant challenge.
In particular, tactile sensing poses serious difficulties due to the diversity of sensor types, data formats, and hardware
configurations. The lack of standardization across robotic platforms further complicates multimodal data collection
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and integration. Although tactile feedback is likely essential for achieving human-level dexterous manipulation, cur-
rent tactile sensors vary widely in design and are not yet widely adopted. Therefore, unifying sensor configurations is
critical to enabling scalable, multimodal VLA systems.

9.2 Reasoning

Reasoning is a particularly important capability for solving long-horizon tasks in VLA systems. Beyond anticipating
future events based on current observations, effective reasoning requires the ability to retain relevant information over
time and retrieve it when needed. This involves maintaining a form of memory and selectively attending to key infor-
mation that supports decision-making across temporally extended tasks. For example, in mobile robot manipulation,
a typical task may involve first locating a shelf, then navigating to a different location to pick up a cup, and finally
returning to place the cup on the shelf. In such cases, the robot must remember the location of the shelf encountered
earlier and retrieve that information at the appropriate time. This type of temporal abstraction and memory-based
retrieval is essential for robust reasoning and planning in real-world scenarios. Enhancing these capabilities is likely
to be a key direction for future research in VLA systems, particularly as tasks grow in complexity and duration.

9.3 Continual Learning

A fundamental limitation of current VLA systems is their inability to learn beyond their initial training phase. Once
trained offline, these models are typically frozen and do not adapt to new situations. Unlike humans, who continuously
learn from ongoing experience, VLA systems remain fixed, making them vulnerable when faced with novel or out-
of-distribution scenarios. In such cases, the robot may fail to act appropriately. To overcome this limitation, enabling
online or continual learning will be essential. By incrementally updating their internal representations and policies
based on new data, VLA systems could better adapt to diverse environments. However, this capability introduces
several challenges, including catastrophic forgetting and safety concerns related to deploying untested updates in real-
world settings. Despite these difficulties, continual learning remains a promising direction for future VLA research.
Approaches such as reinforcement learning from human feedback (RLHF) and active learning inspired by cognitive
development may offer viable pathways toward building adaptive, lifelong-learning VLA systems capable of operating
safely and effectively in the real world.

9.4 Reinforcement Learning

While several prior studies [254, 255,261] have explored the use of RL to fine-tune vision-language-action (VLA)
models, these efforts have predominantly focused on evaluation in simulated environments. This is largely due to
the substantial number of samples required for RL and the risk of unsafe behavior during real-world exploration. As
a result, fine-tuning VLA models within a learned world model presents a promising research direction, offering a
safer and more sample-efficient alternative. In addition, real-to-sim techniques allow the construction of digital twin
environments in which VLA models can be fine-tuned using RL. However, challenges remain in accurately identify-
ing physical parameters and reconstructing scenes, the latter of which often requires multi-view observations [422].
Overall, we posit that advances in world modeling and real-to-sim transfer may enable scalable and safe fine-tuning
of VLA models through RL.

9.5 Safety

While VLA models perform well on manipulation tasks in controlled settings, their deployment in unstructured envi-
ronments poses significant safety challenges. Current systems often lack mechanisms to detect and avoid unexpected
human presence in the workspace, increasing the risk of collisions. Although collecting demonstrations of such edge
cases is possible, doing so via teleoperation remains risky, as the robot may not respond safely in real time. This
underscores the need to integrate VLA with model-based control approaches, which offer predictive reasoning in
safety-critical situations. We argue that improving the safety of VLA systems requires hybrid architectures that com-
bine the generalization capabilities of learned policies with the reliability of model-based controllers.

9.6 Failure Detection and Recovery

In real-world environments, unexpected failures are often unavoidable. However, most current VLA systems lack
mechanisms for detecting such failures or responding appropriately. Failures are typically treated as terminal events,
with no recovery or re-planning strategies in place. To enable reliable deployment in practical applications, it is es-
sential for VLA systems to detect failures and adapt their behavior accordingly. Several recent works have begun to
address this gap. SAFE [423] leverages intermediate representations within VLA models to identify failure events
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during execution. Agentic Robot [424] uses a vision-language model (VLM) to detect failures, execute predefined
recovery behaviors, and then re-plan the task. A more robust solution is proposed in LoHoVLA [245], which employs
a hierarchical architecture. Upon detecting a failure, the system regenerates the current action; if the same failure
is detected multiple times, it escalates the response by re-generating the higher-level subtask, thus enhancing overall
robustness. FOREWARN [283] introduces a predictive planning mechanism by sampling a large number of action
sequences from the policy, clustering them into six behavioral modes, and using the DreamerV3 world model [425] to
simulate future states. The most promising behavioral mode is then selected based on these predictions. As VLA sys-
tems are increasingly applied to long-horizon and open-ended tasks, the ability to detect failures and recover through
adaptive re-planning will be critical for achieving robustness and reliability in real-world deployment.

9.7 Evaluation

While various VLAs with different architectures, modalities, and training methods have been proposed, it remains
unclear which approaches yield the most effective performance. This ambiguity largely stems from the lack of a sta-
tistically rigorous evaluation. As demonstrated in LBM [314], it is crucial to conduct evaluations under controlled and
comparable conditions, with a sufficient number of evaluation trials and appropriate statistical analysis (e.g. confidence
intervals) to ensure whether observed performance differences are statistically significant.

9.8 Applications

VLA systems have potential applications across a wide range of domains, including healthcare, assistive technologies,
industrial automation, and autonomous driving. However, despite this breadth of applicability, VLA models have not
yet reached the level of performance or reliability required for practical deployment. Most existing systems operate
only within constrained, predefined environments and still fall short of human-level capabilities in terms of robustness
and adaptability.

As the field increasingly prioritizes real-world use cases, there will likely be growing attention to issues such as safety,
reliability, and operational efficiency, key factors that must be addressed to enable the successful deployment of VLA
systems in practical applications.

10 Conclusion

This survey provides a comprehensive review of Vision-Language-Action (VLA) models for robotics, tracing their
evolution from early CNN-based approaches to sophisticated multimodal architectures integrating diffusion models
and latent action representations. We have examined the fundamental challenges, architectural innovations, training
methodologies, and real-world applications that define the current landscape of VLA research.

Our analysis reveals several key insights: (1) the critical role of large-scale datasets and pre-trained foundation models
in enabling generalization, (2) the emergence of hierarchical architectures that separate high-level reasoning from
low-level control, (3) the growing importance of multimodal inputs beyond vision and language, and (4) the persistent
challenges in sim-to-real transfer and embodiment generalization. The field has reached a critical inflection point
at which recent advances in foundation models, in conjunction with improved data collection protocols and refined
training methodologies, are anticipated to facilitate the development of robotic systems with improved generalization
and capability. The incorporation of world models, affordance-based reasoning, and RL is expected to underpin the
next generation of VLA models, enabling continuous learning, sophisticated task reasoning, and robust adaptation
across diverse and unstructured real-world environments.
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